ترغب بنشر مسار تعليمي؟ اضغط هنا

Smooth Fano intrinsic Grassmannians of type $(2,n)$ with Picard number two

61   0   0.0 ( 0 )
 نشر من قبل Milena Wrobel
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the notion of intrinsic Grassmannians which generalizes the well known weighted Grassmannians. An intrinsic Grassmannian is a normal projective variety whose Cox ring is defined by the Plucker ideal $I_{d,n}$ of the Grassmannian $mathrm{Gr}(d,n)$. We give a complete classification of all smooth Fano intrinsic Grassmannians of type $(2,n)$ with Picard number two and prove an explicit formula to compute the total number of such varieties for an arbitrary $n$. We study their geometry and show that they satisfy Fujitas freeness conjecture.



قيم البحث

اقرأ أيضاً

87 - Baohua Fu , Wenhao Ou , Junyi Xie 2018
Let $X$ be an $n$-dimensional smooth Fano complex variety of Picard number one. Assume that the VMRT at a general point of $X$ is smooth irreducible and non-degenerate (which holds if $X$ is covered by lines with index $ >(n+2)/2$). It is proven that $dim mathfrak{aut}(X) > n(n+1)/2$ if and only if $X$ is isomorphic to $mathbb{P}^n, mathbb{Q}^n$ or ${rm Gr}(2,5)$. Furthermore, the equality $dim mathfrak{aut}(X) = n(n+1)/2$ holds only when $X$ is isomorphic to the 6-dimensional Lagrangian Grassmannian ${rm Lag}(6)$ or a general hyperplane section of ${rm Gr}(2,5)$.
207 - Baohua Fu , Jun-Muk Hwang 2013
Let X be an $n$-dimensional Fano manifold of Picard number 1. We study how many different ways X can compactify the complex vector group C^n equivariantly. Hassett and Tschinkel showed that when X = P^n with n geq 2, there are many distinct ways that X can be realized as equivariant compactifications of C^n. Our result says that projective space is an exception: among Fano manifolds of Picard number 1 with smooth VMRT, projective space is the only one compactifying C^n equivariantly in more than one ways. This answers questions raised by Hassett-Tschinkel and Arzhantsev-Sharoyko.
We classify rank two vector bundles on a del Pezzo threefold $X$ of Picard rank one whose projectivizations are weak Fano. We also investigate the moduli spaces of such vector bundles when $X$ is of degree five, especially whether it is smooth, irreducible, or fine.
96 - Sharon Robins 2021
Algebraic hyperbolicity serves as a bridge between differential geometry and algebraic geometry. Generally, it is difficult to show that a given projective variety is algebraically hyperbolic. However, it was established recently that a very general surface of degree at least five in projective space is algebraically hyperbolic. We are interested in generalizing the study of surfaces in projective space to surfaces in smooth projective toric threefolds with Picard rank 2 or 3. Following Kleinschmidt and Batyrev, we explore the combinatorial description of smooth projective toric threefolds with Picard rank 2 and 3. We then use Haase and Iltens method of finding algebraically hyperbolic surfaces in toric threefolds. As a result, we determine many algebraically hyperbolic surfaces in each of these varieties.
119 - Qifeng Li 2018
We study the question whether rational homogeneous spaces are rigid under Fano deformation. In other words, given any smooth connected family f:X -> Zof Fano manifolds, if one fiber is biholomorphic to a rational homogeneous space S, whether is f an S-fibration? The cases of Picard number one were studied in a series of papers by J.-M. Hwang and N. Mok. For higher Picard number cases, we notice that the Picard number of a rational homogeneous space G/P is less or equal to the rank of G. Recently A. Weber and J. A. Wisniewski proved that rational homogeneous spaces G/P with Picard numbers equal to the rank of G (i.e. complete flag manifolds) are rigid under Fano deformation. In this paper we show that the rational homogeneous space G/P is rigid under Fano deformation, providing that G is a simple algebraic group of type ADE, the Picard number equal to rank(G)-1 and G/P is not biholomorphic to F(1, 2, P^3) or F(1, 2, Q^6). The variety F(1, 2, P^3) is the set of flags of projective lines and planes in P^3, and F(1, 2, Q^6) is the set of flags of projective lines and planes in 6-dimensional smooth quadric hypersurface. We show that F(1, 2, P^3) have a unique Fano degeneration, which is explicitly constructed. The structure of possible Fano degeneration of F(1, 2, Q^6) is also described explicitly. To prove our rigidity result, we firstly show that the Fano deformation rigidity of a homogeneous space of type ADE can be implied by that property of suitable homogeneous submanifolds. Then we complete the proof via the study of Fano deformation rigidity of rational homogeneous spaces of small Picard numbers. As a byproduct, we also show the Fano deformation rigidity of other manifolds such as F(0, 1, ..., k_1, k_2, k_2+1, ..., n-1, P^n) and F(0, 1, ..., k_1, k_2, k_2+1, ..., n, Q^{2n+2}) with 0 <= k_1 < k_2 <= n-1.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا