ترغب بنشر مسار تعليمي؟ اضغط هنا

Fano deformation rigidity of rational homogeneous spaces of submaximal Picard numbers

120   0   0.0 ( 0 )
 نشر من قبل Qifeng Li
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Qifeng Li




اسأل ChatGPT حول البحث

We study the question whether rational homogeneous spaces are rigid under Fano deformation. In other words, given any smooth connected family f:X -> Zof Fano manifolds, if one fiber is biholomorphic to a rational homogeneous space S, whether is f an S-fibration? The cases of Picard number one were studied in a series of papers by J.-M. Hwang and N. Mok. For higher Picard number cases, we notice that the Picard number of a rational homogeneous space G/P is less or equal to the rank of G. Recently A. Weber and J. A. Wisniewski proved that rational homogeneous spaces G/P with Picard numbers equal to the rank of G (i.e. complete flag manifolds) are rigid under Fano deformation. In this paper we show that the rational homogeneous space G/P is rigid under Fano deformation, providing that G is a simple algebraic group of type ADE, the Picard number equal to rank(G)-1 and G/P is not biholomorphic to F(1, 2, P^3) or F(1, 2, Q^6). The variety F(1, 2, P^3) is the set of flags of projective lines and planes in P^3, and F(1, 2, Q^6) is the set of flags of projective lines and planes in 6-dimensional smooth quadric hypersurface. We show that F(1, 2, P^3) have a unique Fano degeneration, which is explicitly constructed. The structure of possible Fano degeneration of F(1, 2, Q^6) is also described explicitly. To prove our rigidity result, we firstly show that the Fano deformation rigidity of a homogeneous space of type ADE can be implied by that property of suitable homogeneous submanifolds. Then we complete the proof via the study of Fano deformation rigidity of rational homogeneous spaces of small Picard numbers. As a byproduct, we also show the Fano deformation rigidity of other manifolds such as F(0, 1, ..., k_1, k_2, k_2+1, ..., n-1, P^n) and F(0, 1, ..., k_1, k_2, k_2+1, ..., n, Q^{2n+2}) with 0 <= k_1 < k_2 <= n-1.



قيم البحث

اقرأ أيضاً

148 - Cong Ding 2020
Let $M$ be a complex manifold. We prove that a compact submanifold $Ssubset M$ with splitting tangent sequence (called a splitting submanifold) is rational homogeneous when $M$ is in a large class of rational homogeneous spaces of Picard number one. Moreover, when $M$ is irreducible Hermitian symmetric, we prove that $S$ must be also Hermitian symmetric. The basic tool we use is the restriction and projection map $pi$ of the global holomorphic vector fields on the ambient space which is induced from the splitting condition. The usage of global holomorphic vector fields may help us set up a new scheme to classify the splitting submanifolds in explicit examples, as an example we give a differential geometric proof for the classification of compact splitting submanifolds with $dimgeq 2$ in a hyperquadric, which has been previously proven using algebraic geometry.
Complete intersections inside rational homogeneous varieties provide interesting examples of Fano manifolds. For example, if $X = cap_{i=1}^r D_i subset G/P$ is a general complete intersection of $r$ ample divisors such that $K_{G/P}^* otimes mathcal {O}_{G/P}(-sum_i D_i)$ is ample, then $X$ is Fano. We first classify these Fano complete intersections which are locally rigid. It turns out that most of them are hyperplane sections. We then classify general hyperplane sections which are quasi-homogeneous.
168 - Rong Du , Xinyi Fang , Yun Gao 2020
We consider a uniform $r$-bundle $E$ on a complex rational homogeneous space $X$ %over complex number field $mathbb{C}$ and show that if $E$ is poly-uniform with respect to all the special families of lines and the rank $r$ is less than or equal to some number that depends only on $X$, then $E$ is either a direct sum of line bundles or $delta_i$-unstable for some $delta_i$. So we partially answer a problem posted by Mu~{n}oz-Occhetta-Sol{a} Conde. In particular, if $X$ is a generalized Grassmannian $mathcal{G}$ and the rank $r$ is less than or equal to some number that depends only on $X$, then $E$ splits as a direct sum of line bundles. We improve the main theorem of Mu~{n}oz-Occhetta-Sol{a} Conde when $X$ is a generalized Grassmannian by considering the Chow rings. Moreover, by calculating the relative tangent bundles between two rational homogeneous spaces, we give explicit bounds for the generalized Grauert-M{u}lich-Barth theorem on rational homogeneous spaces.
The cohomological rigidity problem for toric manifolds asks whether toric manifolds are diffeomorphic (or homeomorphic) if their integral cohomology rings are isomorphic. Many affirmative partial solutions to the problem have been obtained and no cou nterexample is known. In this paper, we study the diffeomorphism classification of toric Fano $d$-folds with $d=3,4$ or with Picard number $ge 2d-2$. In particular, we show that those manifolds except for two toric Fano $4$-folds are diffeomorphic if their integral cohomology rings are isomorphic. The exceptional two toric Fano $4$-folds (their ID numbers are 50 and 57 on a list of {O}bro) have isomorphic cohomology rings and their total Pontryagin classes are preserved under an isomorphism between their cohomology rings, but we do not know whether they are diffeomorphic or homeomorphic.
In this paper we study the existence of sections of universal bundles on rational homogeneous varieties -- called nestings -- classifying them completely in the case in which the Lie algebra of the automorphism group of the variety is simple of class ical type. In particular we show that, under this hypothesis, nestings do not exist unless there exists a proper algebraic subgroup of the automorphism group acting transitively on the base variety.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا