ﻻ يوجد ملخص باللغة العربية
Deep learning networks have shown promising performance for accurate object localization in medial images, but require large amount of annotated data for supervised training, which is expensive and expertise burdensome. To address this problem, we present a one-shot framework for organ and landmark localization in volumetric medical images, which does not need any annotation during the training stage and could be employed to locate any landmarks or organs in test images given a support (reference) image during the inference stage. Our main idea comes from that tissues and organs from different human bodies have a similar relative position and context. Therefore, we could predict the relative positions of their non-local patches, thus locate the target organ. Our framework is composed of three parts: (1) A projection network trained to predict the 3D offset between any two patches from the same volume, where human annotations are not required. In the inference stage, it takes one given landmark in a reference image as a support patch and predicts the offset from a random patch to the corresponding landmark in the test (query) volume. (2) A coarse-to-fine framework contains two projection networks, providing more accurate localization of the target. (3) Based on the coarse-to-fine model, we transfer the organ boundingbox (B-box) detection to locating six extreme points along x, y and z directions in the query volume. Experiments on multi-organ localization from head-and-neck (HaN) CT volumes showed that our method acquired competitive performance in real time, which is more accurate and 10^5 times faster than template matching methods with the same setting. Code is available: https://github.com/LWHYC/RPR-Loc.
This work tackles the problem of generating a medical report for multi-image panels. We apply our solution to the Renal Direct Immunofluorescence (RDIF) assay which requires a pathologist to generate a report based on observations across the eight di
Unsupervised anomaly detection (UAD) learns one-class classifiers exclusively with normal (i.e., healthy) images to detect any abnormal (i.e., unhealthy) samples that do not conform to the expected normal patterns. UAD has two main advantages over it
A label-efficient paradigm in computer vision is based on self-supervised contrastive pre-training on unlabeled data followed by fine-tuning with a small number of labels. Making practical use of a federated computing environment in the clinical doma
Zero-shot object detection (ZSD), the task that extends conventional detection models to detecting objects from unseen categories, has emerged as a new challenge in computer vision. Most existing approaches tackle the ZSD task with a strict mapping-t
The performance of medical image analysis systems is constrained by the quantity of high-quality image annotations. Such systems require data to be annotated by experts with years of training, especially when diagnostic decisions are involved. Such d