ﻻ يوجد ملخص باللغة العربية
With the popularity of the Internet, traditional offline resource allocation has evolved into a new form, called online resource allocation. It features the online arrivals of agents in the system and the real-time decision-making requirement upon the arrival of each online agent. Both offline and online resource allocation have wide applications in various real-world matching markets ranging from ridesharing to crowdsourcing. There are some emerging applications such as rebalancing in bike sharing and trip-vehicle dispatching in ridesharing, which involve a two-stage resource allocation process. The process consists of an offline phase and another sequential online phase, and both phases compete for the same set of resources. In this paper, we propose a unified model which incorporates both offline and online resource allocation into a single framework. Our model assumes non-uniform and known arrival distributions for online agents in the second online phase, which can be learned from historical data. We propose a parameterized linear programming (LP)-based algorithm, which is shown to be at most a constant factor of $1/4$ from the optimal. Experimental results on the real dataset show that our LP-based approaches outperform the LP-agnostic heuristics in terms of robustness and effectiveness.
We consider a new and general online resource allocation problem, where the goal is to maximize a function of a positive semidefinite (PSD) matrix with a scalar budget constraint. The problem data arrives online, and the algorithm needs to make an ir
In distributed machine learning, data is dispatched to multiple machines for processing. Motivated by the fact that similar data points often belong to the same or similar classes, and more generally, classification rules of high accuracy tend to be
In heterogeneous cellular network, task scheduling for computation offloading is one of the biggest challenges. Most works focus on alleviating heavy burden of macro base stations by moving the computation tasks on macro-cell user equipment (MUE) to
We study online resource allocation in a cloud computing platform, through a posted pricing mechanism: The cloud provider publishes a unit price for each resource type, which may vary over time; upon arrival at the cloud system, a cloud user either t
A classical problem in city-scale cyber-physical systems (CPS) is resource allocation under uncertainty. Typically, such problems are modeled as Markov (or semi-Markov) decision processes. While online, offline, and decentralized approaches have been