ﻻ يوجد ملخص باللغة العربية
Amoeboid cell migration is characterized by frequent changes of the direction of motion and resembles a persistent random walk on long time scales. Although it is well known that cell migration is typically driven by the actin cytoskeleton, the cause of this migratory behavior remains poorly understood. We analyze the spontaneous dynamics of actin assembly due to nucleation promoting factors, where actin filaments lead to an inactivation of the nucleators. We show that this system exhibits excitable dynamics and can spontaneously generate waves, which we analyse in detail. By using a phase-field approach, we show that these waves can generate cellular random walks. We explore how the characteristics of these persistent random walks depend on the parameters governing the actin-nucleator dynamics. In particular, we find that the effective diffusion constant and the persistence time depend strongly on the speed of filament assembly and the rate of nucleator inactivation. Our findings point to a deterministic origin of the random walk behavior and suggest that cells could adapt their migration pattern by modifying the pool of available actin.
We investigate the mechanical interplay between the spatial organization of the actin cytoskeleton and the shape of animal cells adhering on micropillar arrays. Using a combination of analytical work, computer simulations and in vitro experiments, we
Key to collective cell migration is the ability of cells to rearrange their position with respect to their neighbors. Recent theory and experiments demonstrated that cellular rearrangements are facilitated by cell shape, with cells having more elonga
Collections of cells exhibit coherent migration during morphogenesis, cancer metastasis, and wound healing. In many cases, bigger clusters split, smaller sub-clusters collide and reassemble, and gaps continually emerge. The connections between cell-l
A free vortex in excitable media can be displaced and removed by a wave-train. However, simple physical arguments suggest that vortices anchored to large inexcitable obstacles cannot be removed similarly. We show that unpinning of vortices attached t
We consider population dynamics on a network of patches, each of which has a the same local dynamics, with different population scales (carrying capacities). It is reasonable to assume that if the patches are coupled by very fast migration the whole