ترغب بنشر مسار تعليمي؟ اضغط هنا

Dirac imprints on the $g$-factor anisotropy in graphene

66   0   0.0 ( 0 )
 نشر من قبل Marta Prada
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dirac electrons in graphene are to lowest order spin 1/2 particles, owing to the orbital symmetries at the Fermi level. However, anisotropic corrections in the $g$-factor appear due to the intricate spin-valley-orbit coupling of chiral electrons. We resolve experimentally the $g$-factor along the three orthogonal directions in a large-scale graphene sample. We employ a Hall bar structure with an external magnetic field of arbitrary direction, and extract the effective $g$-tensor via resistively-detected electron spin resonance. We employ a theoretical perturbative approach to identify the intrinsic and extrinsic spin orbit coupling and obtain a fundamental parameter inherent to the atomic structure of $^{12}$C, commonly used in ab-initio models.



قيم البحث

اقرأ أيضاً

137 - D. Kim , W. Sheng , P.J. Poole 2008
Photoluminescence data from single, self-assembled InAs/InP quantum dots in magnetic fields up to 7 T are presented. Exciton g-factors are obtained for dots of varying height, corresponding to ground state emission energies ranging from 780 meV to 11 00 meV. A monotonic increase of the g-factor from -2 to +1.2 is observed as the dot height decreases. The trend is well reproduced by sp3 tight binding calculations, which show that the hole g-factor is sensitive to confinement effects through orbital angular momentum mixing between the light-hole and heavy-hole valence bands. We demonstrate tunability of the exciton g-factor by manipulating the quantum dot dimensions using pyramidal InP nanotemplates.
111 - A. V. Volkov , A. A. Shylau , 2012
We study the effect of electron interaction on the spin-splitting and the $g$-factor in graphene in perpendicular magnetic field using the Hartree and Hubbard approximations within the Thomas-Fermi model. We found that the $g$-factor is enhanced in c omparison to its free electron value $g=2$ and oscillates as a function of the filling factor $ u $ in the range $2leq g^{ast}lesssim 4$ reaching maxima at even $ u $ and minima at odd $ u $. We outline the role of charged impurities in the substrate, which are shown to suppress the oscillations of the $g^{ast}$-factor. This effect becomes especially pronounced with the increase of the impurity concentration, when the effective $g$-factor becomes independent of the filling factor reaching a value of $g^{ast}approx 2.3$. A relation to the recent experiment is discussed.
We discuss plasmons of biased twisted bilayer graphene when the Fermi level lies inside the gap. The collective excitations are a network of chiral edge plasmons (CEP) entirely composed of excitations in the topological electronic edge states (EES) t hat appear at the AB-BA interfaces. The CEP form an hexagonal network with an unique energy scale $epsilon_p=frac{e^2}{epsilon_0epsilon t_0}$ with $t_0$ the moire lattice constant and $epsilon$ the dielectric constant. From the dielectric matrix we obtain the plasmon spectra that has two main characteristics: (i) a diverging density of states at zero energy, and (ii) the presence of a plasmonic Dirac cone at $hbaromegasimepsilon_p/2$ with sound velocity $v_D=0.0075c$, which is formed by zigzag and armchair current oscillations. A network model reveals that the antisymmetry of the plasmon bands implies that CEP scatter at the hexagon vertices maximally in the deflected chiral outgoing directions, with a current ratio of 4/9 into each of the deflected directions and 1/9 into the forward one. We show that scanning near-field microscopy should be able to observe the predicted plasmonic Dirac cone and its broken symmetry phases.
We report experimental evidence of ballistic hole transport in one-dimensional quantum wires gate-defined in a strained SiGe/Ge/SiGe quantum well. At zero magnetic field, we observe conductance plateaus at integer multiples of 2e^2/h. At finite magne tic field, the splitting of these plateaus by Zeeman effect reveals largely anisotropic g-factors, with absolute values below 1 in the quantum-well plane, and exceeding 10 out of plane. This g-factor anisotropy is consistent with a heavy-hole character of the propagating valence-band states, in line with a predominant confinement in the growth direction. Remarkably, we observe quantized ballistic conductance in device channels up to 600 nm long. These findings mark an important step towards the realization of novel devices for applications in quantum spintronics.
The opening of a gap in single-layer graphene is often ascribed to the breaking of the equivalence between the two carbon sublattices. We show by angle-resolved photoemission spectroscopy that Ir- and Na-modified graphene grown on the Ir(111) surface presents a very large unconventional gap that can be described in terms of a phenomenological massless Dirac model. We discuss the consequences and differences of this model in comparison of the standard massive gap model, and we investigate the conditions under which such anomalous gap can arise from a spontaneous symmetry breaking.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا