ترغب بنشر مسار تعليمي؟ اضغط هنا

Transmon platform for quantum computing challenged by chaotic fluctuations

125   0   0.0 ( 0 )
 نشر من قبل Christoph Berke
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From the perspective of many body physics, the transmon qubit architectures currently developed for quantum computing are systems of coupled nonlinear quantum resonators. A significant amount of intentional frequency detuning (disorder) is required to protect individual qubit states against the destabilizing effects of nonlinear resonator coupling. Here we investigate the stability of this variant of a many-body localized (MBL) phase for system parameters relevant to current quantum processors of two different types, those using untunable qubits (IBM type) and those using tunable qubits (Delft/Google type). Applying three independent diagnostics of localization theory - a Kullback-Leibler analysis of spectral statistics, statistics of many-body wave functions (inverse participation ratios), and a Walsh transform of the many-body spectrum - we find that these computing platforms are dangerously close to a phase of uncontrollable chaotic fluctuations.



قيم البحث

اقرأ أيضاً

95 - Arnau Sala , M. Blaauboer 2015
We propose an implementation of a quantum router for microwave photons in a superconducting qubit architecture consisting of a transmon qubit, SQUIDs and a nonlinear capacitor. We model and analyze the dynamics of operation of the quantum switch usin g quantum Langevin equations in a scattering approach and compute the photon reflection and transmission probabilities. For parameters corresponding to up-to-date experimental devices we predict successful operation of the router with probabilities above 94%.
We analyze the coupling of two qubits via an epitaxial semiconducting junction. In particular, we consider three configurations that include pairs of transmons or gatemons as well as gatemon-like two qubits formed by an epitaxial four-terminal juncti on. These three configurations provide an electrical control of the interaction between the qubits by applying voltage to a metallic gate near the semiconductor junction and can be utilized to naturally realize a controlled-Z gate (CZ). We calculate the fidelity and timing for such CZ gate. We demonstrate that in the absence of decoherence, the CZ gate can be performed under $50 {rm ns}$ with gate error below $10^{-4}$.
Recent years have seen extraordinary progress in creating quantum states of mechanical oscillators, leading to great interest in potential applications for such systems in both fundamental as well as applied quantum science. One example is the use of these devices as transducers between otherwise disparate quantum systems. In this regard, a promising approach is to build integrated piezoelectric optomechanical devices, that are then coupled to microwave circuits. Optical absorption, low quality factors and other challenges have up to now prevented operation in the quantum regime, however. Here, we design and characterize such a piezoelectric optomechanical device fabricated from gallium phosphide in which a 2.9~GHz mechanical mode is coupled to a high quality factor optical resonator in the telecom band. The large electronic bandgap and the resulting low optical absorption of this new material, on par with devices fabricated from silicon, allows us to demonstrate quantum behavior of the structure. This not only opens the way for realizing noise-free quantum transduction between microwaves and optics, but in principle also from various color centers with optical transitions in the near visible to the telecom band.
Quantum simulators are attractive as a means to study many-body quantum systems that are not amenable to classical numerical treatment. A versatile framework for quantum simulation is offered by superconducting circuits. In this perspective, we discu ss how superconducting circuits allow the engineering of a wide variety of interactions, which in turn allows the simulation of a wide variety of model Hamiltonians. In particular we focus on strong photon-photon interactions mediated by nonlinear elements. This includes on-site, nearest-neighbour and four-body interactions in lattice models, allowing the implementation of extended Bose-Hubbard models and the toric code. We discuss not only the present state in analogue quantum simulation, but also future perspectives of superconducting quantum simulation that open up when concatenating quantum gates in emerging quantum computing platforms.
$mathbb{Z}_d$ Parafermions are exotic non-Abelian quasiparticles generalizing Majorana fermions, which correspond to the case $d=2$. In contrast to Majorana fermions, braiding of parafermions with $d>2$ allows to perform an entangling gate. This has spurred interest in parafermions and a variety of condensed matter systems have been proposed as potential hosts for them. In this work, we study the computational power of braiding parafermions more systematically. We make no assumptions on the underlying physical model but derive all our results from the algebraical relations that define parafermions. We find a familiy of $2d$ representations of the braid group that are compatible with these relations. The braiding operators derived this way reproduce those derived previously from physical grounds as special cases. We show that if a $d$-level qudit is encoded in the fusion space of four parafermions, braiding of these four parafermions allows to generate the entire single-qudit Clifford group (up to phases), for any $d$. If $d$ is odd, then we show that in fact the entire many-qudit Clifford group can be generated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا