ﻻ يوجد ملخص باللغة العربية
Recent years have seen extraordinary progress in creating quantum states of mechanical oscillators, leading to great interest in potential applications for such systems in both fundamental as well as applied quantum science. One example is the use of these devices as transducers between otherwise disparate quantum systems. In this regard, a promising approach is to build integrated piezoelectric optomechanical devices, that are then coupled to microwave circuits. Optical absorption, low quality factors and other challenges have up to now prevented operation in the quantum regime, however. Here, we design and characterize such a piezoelectric optomechanical device fabricated from gallium phosphide in which a 2.9~GHz mechanical mode is coupled to a high quality factor optical resonator in the telecom band. The large electronic bandgap and the resulting low optical absorption of this new material, on par with devices fabricated from silicon, allows us to demonstrate quantum behavior of the structure. This not only opens the way for realizing noise-free quantum transduction between microwaves and optics, but in principle also from various color centers with optical transitions in the near visible to the telecom band.
Mechanical resonators can act as excellent intermediaries to interface single photons in the microwave and optical domains due to their high quality factors. Nevertheless, the optical pump required to overcome the large energy difference between the
Studying mechanical resonators via radiation pressure offers a rich avenue for the exploration of quantum mechanical behavior in a macroscopic regime. However, quantum state preparation and especially quantum state reconstruction of mechanical oscill
Wave mixing is an archetypical phenomenon in bosonic systems. In optomechanics, the bi-directional conversion between electromagnetic waves or photons at optical frequencies and elastic waves or phonons at radio frequencies is building on precisely t
We present a new micromechanical resonator designed for cavity optomechanics. We have used a micropillar geometry to obtain a high-frequency mechanical resonance with a low effective mass and a very high quality factor. We have coated a 60-$mu$m diam
Gallium phosphide (GaP) is an indirect bandgap semiconductor used widely in solid-state lighting. Despite numerous intriguing optical properties---including large $chi^{(2)}$ and $chi^{(3)}$ coefficients, a high refractive index ($>3$), and transpare