ترغب بنشر مسار تعليمي؟ اضغط هنا

AutoSelect: Automatic and Dynamic Detection Selection for 3D Multi-Object Tracking

123   0   0.0 ( 0 )
 نشر من قبل Xinshuo Weng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

3D multi-object tracking is an important component in robotic perception systems such as self-driving vehicles. Recent work follows a tracking-by-detection pipeline, which aims to match past tracklets with detections in the current frame. To avoid matching with false positive detections, prior work filters out detections with low confidence scores via a threshold. However, finding a proper threshold is non-trivial, which requires extensive manual search via ablation study. Also, this threshold is sensitive to many factors such as target object category so we need to re-search the threshold if these factors change. To ease this process, we propose to automatically select high-quality detections and remove the efforts needed for manual threshold search. Also, prior work often uses a single threshold per data sequence, which is sub-optimal in particular frames or for certain objects. Instead, we dynamically search threshold per frame or per object to further boost performance. Through experiments on KITTI and nuScenes, our method can filter out $45.7%$ false positives while maintaining the recall, achieving new S.O.T.A. performance and removing the need for manually threshold tuning.



قيم البحث

اقرأ أيضاً

Point clouds and RGB images are naturally complementary modalities for 3D visual understanding - the former provides sparse but accurate locations of points on objects, while the latter contains dense color and texture information. Despite this poten tial for close sensor fusion, many methods train two models in isolation and use simple feature concatenation to represent 3D sensor data. This separated training scheme results in potentially sub-optimal performance and prevents 3D tasks from being used to benefit 2D tasks that are often useful on their own. To provide a more integrated approach, we propose a novel Multi-Modality Task Cascade network (MTC-RCNN) that leverages 3D box proposals to improve 2D segmentation predictions, which are then used to further refine the 3D boxes. We show that including a 2D network between two stages of 3D modules significantly improves both 2D and 3D task performance. Moreover, to prevent the 3D module from over-relying on the overfitted 2D predictions, we propose a dual-head 2D segmentation training and inference scheme, allowing the 2nd 3D module to learn to interpret imperfect 2D segmentation predictions. Evaluating our model on the challenging SUN RGB-D dataset, we improve upon state-of-the-art results of both single modality and fusion networks by a large margin ($textbf{+3.8}$ [email protected]). Code will be released $href{https://github.com/Divadi/MTC_RCNN}{text{here.}}$
The main challenge of online multi-object tracking is to reliably associate object trajectories with detections in each video frame based on their tracking history. In this work, we propose the Recurrent Autoregressive Network (RAN), a temporal gener ative modeling framework to characterize the appearance and motion dynamics of multiple objects over time. The RAN couples an external memory and an internal memory. The external memory explicitly stores previous inputs of each trajectory in a time window, while the internal memory learns to summarize long-term tracking history and associate detections by processing the external memory. We conduct experiments on the MOT 2015 and 2016 datasets to demonstrate the robustness of our tracking method in highly crowded and occluded scenes. Our method achieves top-ranked results on the two benchmarks.
It is counter-intuitive that multi-modality methods based on point cloud and images perform only marginally better or sometimes worse than approaches that solely use point cloud. This paper investigates the reason behind this phenomenon. Due to the f act that multi-modality data augmentation must maintain consistency between point cloud and images, recent methods in this field typically use relatively insufficient data augmentation. This shortage makes their performance under expectation. Therefore, we contribute a pipeline, named transformation flow, to bridge the gap between single and multi-modality data augmentation with transformation reversing and replaying. In addition, considering occlusions, a point in different modalities may be occupied by different objects, making augmentations such as cut and paste non-trivial for multi-modality detection. We further present Multi-mOdality Cut and pAste (MoCa), which simultaneously considers occlusion and physical plausibility to maintain the multi-modality consistency. Without using ensemble of detectors, our multi-modality detector achieves new state-of-the-art performance on nuScenes dataset and competitive performance on KITTI 3D benchmark. Our method also wins the best PKL award in the 3rd nuScenes detection challenge. Code and models will be released at https://github.com/open-mmlab/mmdetection3d.
The ability to simultaneously track and reconstruct multiple objects moving in the scene is of the utmost importance for robotic tasks such as autonomous navigation and interaction. Virtually all of the previous attempts to map multiple dynamic objec ts have evolved to store individual objects in separate reconstruction volumes and track the relative pose between them. While simple and intuitive, such formulation does not scale well with respect to the number of objects in the scene and introduces the need for an explicit occlusion handling strategy. In contrast, we propose a map representation that allows maintaining a single volume for the entire scene and all the objects therein. To this end, we introduce a novel multi-object TSDF formulation that can encode multiple object surfaces at any given location in the map. In a multiple dynamic object tracking and reconstruction scenario, our representation allows maintaining accurate reconstruction of surfaces even while they become temporarily occluded by other objects moving in their proximity. We evaluate the proposed TSDF++ formulation on a public synthetic dataset and demonstrate its ability to preserve reconstructions of occluded surfaces when compared to the standard TSDF map representation.
To reduce annotation labor associated with object detection, an increasing number of studies focus on transferring the learned knowledge from a labeled source domain to another unlabeled target domain. However, existing methods assume that the labele d data are sampled from a single source domain, which ignores a more generalized scenario, where labeled data are from multiple source domains. For the more challenging task, we propose a unified Faster R-CNN based framework, termed Divide-and-Merge Spindle Network (DMSN), which can simultaneously enhance domain invariance and preserve discriminative power. Specifically, the framework contains multiple source subnets and a pseudo target subnet. First, we propose a hierarchical feature alignment strategy to conduct strong and weak alignments for low- and high-level features, respectively, considering their different effects for object detection. Second, we develop a novel pseudo subnet learning algorithm to approximate optimal parameters of pseudo target subset by weighted combination of parameters in different source subnets. Finally, a consistency regularization for region proposal network is proposed to facilitate each subnet to learn more abstract invariances. Extensive experiments on different adaptation scenarios demonstrate the effectiveness of the proposed model.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا