ﻻ يوجد ملخص باللغة العربية
The electronic spins of the nitrogen-vacancy centers (NV centers) in Chemical-Vapor-Deposition (CVD) grown diamonds form ideal probes of magnetic fields and temperature, as well as promising qu-bits for quantum information processing. Studying and controlling the magnetic environment of NV centers in such high purity crystals is thus essential for these applications. We demonstrate optical detection of paramagnetic species, such as hydrogen-related complexes, in a CVD-grown diamond. The resonant transfer of the NV centers polarized electronic spins to the electronic spins of these species generates conspicuous features in the NV photoluminescence by employing magnetic field scans along the [100] crystal direction. Our results offer prospects for more detailed studies of CVD-grown processes as well as for coherent control of the spin of novel classes of hyper-polarized paramagnetic species.
We report on the study of optical properties of mist CVD grown alpha Gallium oxide with the observation of excitonic absorption in spectral responsivity measurements. 163 nm of Gallium oxide was grown on sapphire using Gallium acetylacetonate as the
Thick CVD diamond layers were successfully grown on (113)-oriented substrates. They exhibited smooth surface morphologies and a crystalline quality comparable to (100) electronic grade material, and much better than (111)-grown layers. High growth ra
Color centers in diamond are very promising candidates among the possible realizations for practical single-photon sources because of their long-time stable emission at room temperature. The popular nitrogen-vacancy center shows single-photon emissio
We show the emergence of fractional quantum Hall states in dry-transferred chemical vapor deposition (CVD) derived graphene assembled into heterostructures for magnetic fields from below 3 T to 35 T. Effective composite-fermion filling factors up to
The results of magneto-optical spectroscopy investigations of excitons in a CVD grown monolayer of WSe2 encapsulated in hexagonal boron nitride are presented. The emission linewidth for the 1s state is of 4:7 meV, close to the narrowest emissions obs