ترغب بنشر مسار تعليمي؟ اضغط هنا

Polarization calibration techniques for new-generation VLBI

249   0   0.0 ( 0 )
 نشر من قبل Iv\\'an Mart\\'i-Vidal Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The calibration and analysis of polarization observations in Very Long Baseline Interferometry (VLBI) requires the use of specific algorithms that suffer from several limitations, closely related to assumptions in the data properties that may not hold in observations taken with new-generation VLBI equipment. Nowadays, the instantaneous bandwidth achievable with VLBI backends can be as high as several GHz, covering several radio bands simultaneously. In addition, the sensitivity of VLBI observations with state-of-the-art equipment may reach dynamic ranges of tens of thousands, both in total intensity and in polarization. In this paper, we discuss the impact of the limitations of common VLBI polarimetry algorithms on narrow-field observations taken with modern VLBI arrays (from the VLBI Global Observing System, VGOS, to the Event Horizon Telescope, EHT) and present new software that overcomes these limitations. In particular, our software is able to perform a simultaneous fit of multiple calibrator sources, include non-linear terms in the model of the instrumental polarization and use a self-calibration approach for the estimate of the polarization leakage in the antenna receivers.

قيم البحث

اقرأ أيضاً

We report the development of a semi-automatic pipeline for the calibration of 86 GHz full-polarization observations performed with the Global Millimeter-VLBI array (GMVA) and describe the calibration strategy followed in the data reduction. Our calib ration pipeline involves non-standard procedures, since VLBI polarimetry at frequencies above 43 GHz is not yet well established. We also present, for the first time, a full-polarization global-VLBI image at 86 GHz (source 3C 345), as an example of the final product of our calibration pipeline, and discuss the effect of instrumental limitations on the fidelity of the polarization images. Our calibration strategy is not exclusive for the GMVA, and could be applied on other VLBI arrays at millimeter wavelengths. The use of this pipeline will allow GMVA observers to get fully-calibrated datasets shortly after the data correlation.
67 - M. Janssen , C. Goddi , H. Falcke 2019
Currently, HOPS and AIPS are the primary choices for the time-consuming process of (millimeter) Very Long Baseline Interferometry (VLBI) data calibration. However, for a full end-to-end pipeline, they either lack the ability to perform easily scripta ble incremental calibration or do not provide full control over the workflow with the ability to manipulate and edit calibration solutions directly. The Common Astronomy Software Application (CASA) offers all these abilities, together with a secure development future and an intuitive Python interface, which is very attractive for young radio astronomers. Inspired by the recent addition of a global fringe-fitter, the capability to convert FITS-IDI files to measurement sets, and amplitude calibration routines based on ANTAB metadata, we have developed the the CASA-based Radboud PIpeline for the Calibration of high Angular Resolution Data (rPICARD). The pipeline will be able to handle data from multiple arrays: EHT, GMVA, VLBA and the EVN in the first release. Polarization and phase-referencing calibration are supported and a spectral line mode will be added in the future. The large bandwidths of future radio observatories ask for a scalable reduction software. Within CASA, a message passing interface (MPI) implementation is used for parallelization, reducing the total time needed for processing. The most significant gain is obtained for the time-consuming fringe-fitting task where each scan be processed in parallel.
Typical astronomical spectrographs have a resolution ranging between a few hundred to 200.000. Deconvolution and correlation techniques are being employed with a significance down to 1/1000 th of a pixel. HeAr and ThAr lamps are usually used for cali bration in low and high resolution spectroscopy, respectively. Unfortunately, the emitted lines typically cover only a small fraction of the spectrometers spectral range. Furthermore, their exact position depends strongly on environmental conditions. A problem is the strong intensity variation between different (intensity ratios {>300). In addition, the brightness of the lamps is insufficient to illuminate a spectrograph via an integrating sphere, which in turn is important to calibrate a long-slit spectrograph, as this is the only way to assure a uniform illumination of the spectrograph pupil. Laboratory precision laser spectroscopy has experienced a major advance with the development of optical frequency combs generated by pulsed femto-second lasers. These lasers emit a broad spectrum (several hundred nanometers in the visible and near infra-red) of equally-spaced comb lines with almost uniform intensity (intensity ratios typically <10). Self-referencing of the laser establishes a precise ruler in frequency space that can be stabilized to the 10e-18 uncertainty level, reaching absolute frequency inaccuracies at the 10e-12 level per day when using the Global Positioning Systems (GPS) time signal as the reference. The exploration of the merits of this new technology holds the promise for broad-band, highly accurate and reproducible calibration required for reliable operation of current and next generation astronomic spectrometers.
We describe the Cosmic Microwave Background (CMB) polarization experiment called Polarbear. This experiment will use the dedicated Huan Tran Telescope equipped with a powerful 1,200-bolometer array receiver to map the CMB polarization with unpreceden ted accuracy. We summarize the experiment, its goals, and current status.
In this chapter we present a brief summary of methods, instruments and calibration techniques used in modern astronomical polarimetry in the optical wavelengths. We describe the properties of various polarization devices and detectors used for optica l broadband, imaging and spectropolarimetry, and discuss their advantages and disadvantages. The necessity of a proper calibration of the raw polarization data is emphasized and methods of the determination and subtraction of instrumental polarization are considered. We also present a few examples of high-precision measurements of optical polarization of black hole X-ray binaries and massive binary stars made with our DiPol-2 polarimeter, which allowed us to constrain the sources of optical emission in black hole X-ray binaries and measure orbital parameters of massive stellar binaries.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا