ﻻ يوجد ملخص باللغة العربية
Currently, HOPS and AIPS are the primary choices for the time-consuming process of (millimeter) Very Long Baseline Interferometry (VLBI) data calibration. However, for a full end-to-end pipeline, they either lack the ability to perform easily scriptable incremental calibration or do not provide full control over the workflow with the ability to manipulate and edit calibration solutions directly. The Common Astronomy Software Application (CASA) offers all these abilities, together with a secure development future and an intuitive Python interface, which is very attractive for young radio astronomers. Inspired by the recent addition of a global fringe-fitter, the capability to convert FITS-IDI files to measurement sets, and amplitude calibration routines based on ANTAB metadata, we have developed the the CASA-based Radboud PIpeline for the Calibration of high Angular Resolution Data (rPICARD). The pipeline will be able to handle data from multiple arrays: EHT, GMVA, VLBA and the EVN in the first release. Polarization and phase-referencing calibration are supported and a spectral line mode will be added in the future. The large bandwidths of future radio observatories ask for a scalable reduction software. Within CASA, a message passing interface (MPI) implementation is used for parallelization, reducing the total time needed for processing. The most significant gain is obtained for the time-consuming fringe-fitting task where each scan be processed in parallel.
Realistic synthetic observations of theoretical source models are essential for our understanding of real observational data. In using synthetic data, one can verify the extent to which source parameters can be recovered and evaluate how various data
We present VOLKS2, the second release of VLBI Observation for transient Localization Keen Searcher. The pipeline aims at transient search in regular VLBI observations as well as detection of single pulses from known sources in dedicated VLBI observat
As part of an on-going effort to simplify the data analysis path for VLBI experiments, a pipeline procedure has been developed at JIVE to carry out much of the data reduction required for EVN experiments in an automated fashion. This pipeline procedu
The calibration and analysis of polarization observations in Very Long Baseline Interferometry (VLBI) requires the use of specific algorithms that suffer from several limitations, closely related to assumptions in the data properties that may not hol
We present the data reduction pipeline for CHARIS, a high-contrast integral-field spectrograph for the Subaru Telescope. The pipeline constructs a ramp from the raw reads using the measured nonlinear pixel response, and reconstructs the data cube usi