ترغب بنشر مسار تعليمي؟ اضغط هنا

An Event Correlation Filtering Method for Fake News Detection

121   0   0.0 ( 0 )
 نشر من قبل Hao Li
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Nowadays, social network platforms have been the prime source for people to experience news and events due to their capacities to spread information rapidly, which inevitably provides a fertile ground for the dissemination of fake news. Thus, it is significant to detect fake news otherwise it could cause public misleading and panic. Existing deep learning models have achieved great progress to tackle the problem of fake news detection. However, training an effective deep learning model usually requires a large amount of labeled news, while it is expensive and time-consuming to provide sufficient labeled news in actual applications. To improve the detection performance of fake news, we take advantage of the event correlations of news and propose an event correlation filtering method (ECFM) for fake news detection, mainly consisting of the news characterizer, the pseudo label annotator, the event credibility updater, and the news entropy selector. The news characterizer is responsible for extracting textual features from news, which cooperates with the pseudo label annotator to assign pseudo labels for unlabeled news by fully exploiting the event correlations of news. In addition, the event credibility updater employs adaptive Kalman filter to weaken the credibility fluctuations of events. To further improve the detection performance, the news entropy selector automatically discovers high-quality samples from pseudo labeled news by quantifying their news entropy. Finally, ECFM is proposed to integrate them to detect fake news in an event correlation filtering manner. Extensive experiments prove that the explainable introduction of the event correlations of news is beneficial to improve the detection performance of fake news.



قيم البحث

اقرأ أيضاً

Fake news can significantly misinform people who often rely on online sources and social media for their information. Current research on fake news detection has mostly focused on analyzing fake news content and how it propagates on a network of user s. In this paper, we emphasize the detection of fake news by assessing its credibility. By analyzing public fake news data, we show that information on news sources (and authors) can be a strong indicator of credibility. Our findings suggest that an authors history of association with fake news, and the number of authors of a news article, can play a significant role in detecting fake news. Our approach can help improve traditional fake news detection methods, wherein content features are often used to detect fake news.
The topic of fake news has drawn attention both from the public and the academic communities. Such misinformation has the potential of affecting public opinion, providing an opportunity for malicious parties to manipulate the outcomes of public event s such as elections. Because such high stakes are at play, automatically detecting fake news is an important, yet challenging problem that is not yet well understood. Nevertheless, there are three generally agreed upon characteristics of fake news: the text of an article, the user response it receives, and the source users promoting it. Existing work has largely focused on tailoring solutions to one particular characteristic which has limited their success and generality. In this work, we propose a model that combines all three characteristics for a more accurate and automated prediction. Specifically, we incorporate the behavior of both parties, users and articles, and the group behavior of users who propagate fake news. Motivated by the three characteristics, we propose a model called CSI which is composed of three modules: Capture, Score, and Integrate. The first module is based on the response and text; it uses a Recurrent Neural Network to capture the temporal pattern of user activity on a given article. The second module learns the source characteristic based on the behavior of users, and the two are integrated with the third module to classify an article as fake or not. Experimental analysis on real-world data demonstrates that CSI achieves higher accuracy than existing models, and extracts meaningful latent representations of both users and articles.
The dissemination of fake news significantly affects personal reputation and public trust. Recently, fake news detection has attracted tremendous attention, and previous studies mainly focused on finding clues from news content or diffusion path. How ever, the required features of previous models are often unavailable or insufficient in early detection scenarios, resulting in poor performance. Thus, early fake news detection remains a tough challenge. Intuitively, the news from trusted and authoritative sources or shared by many users with a good reputation is more reliable than other news. Using the credibility of publishers and users as prior weakly supervised information, we can quickly locate fake news in massive news and detect them in the early stages of dissemination. In this paper, we propose a novel Structure-aware Multi-head Attention Network (SMAN), which combines the news content, publishing, and reposting relations of publishers and users, to jointly optimize the fake news detection and credibility prediction tasks. In this way, we can explicitly exploit the credibility of publishers and users for early fake news detection. We conducted experiments on three real-world datasets, and the results show that SMAN can detect fake news in 4 hours with an accuracy of over 91%, which is much faster than the state-of-the-art models.
This is a paper for exploring various different models aiming at developing fake news detection models and we had used certain machine learning algorithms and we had used pretrained algorithms such as TFIDF and CV and W2V as features for processing textual data.
With the rapid evolution of social media, fake news has become a significant social problem, which cannot be addressed in a timely manner using manual investigation. This has motivated numerous studies on automating fake news detection. Most studies explore supervised training models with different modalities (e.g., text, images, and propagation networks) of news records to identify fake news. However, the performance of such techniques generally drops if news records are coming from different domains (e.g., politics, entertainment), especially for domains that are unseen or rarely-seen during training. As motivation, we empirically show that news records from different domains have significantly different word usage and propagation patterns. Furthermore, due to the sheer volume of unlabelled news records, it is challenging to select news records for manual labelling so that the domain-coverage of the labelled dataset is maximized. Hence, this work: (1) proposes a novel framework that jointly preserves domain-specific and cross-domain knowledge in news records to detect fake news from different domains; and (2) introduces an unsupervised technique to select a set of unlabelled informative news records for manual labelling, which can be ultimately used to train a fake news detection model that performs well for many domains while minimizing the labelling cost. Our experiments show that the integration of the proposed fake news model and the selective annotation approach achieves state-of-the-art performance for cross-domain news datasets, while yielding notable improvements for rarely-appearing domains in news datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا