ترغب بنشر مسار تعليمي؟ اضغط هنا

Early Detection of Fake News by Utilizing the Credibility of News, Publishers, and Users Based on Weakly Supervised Learning

139   0   0.0 ( 0 )
 نشر من قبل Chun Yuan Yuan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The dissemination of fake news significantly affects personal reputation and public trust. Recently, fake news detection has attracted tremendous attention, and previous studies mainly focused on finding clues from news content or diffusion path. However, the required features of previous models are often unavailable or insufficient in early detection scenarios, resulting in poor performance. Thus, early fake news detection remains a tough challenge. Intuitively, the news from trusted and authoritative sources or shared by many users with a good reputation is more reliable than other news. Using the credibility of publishers and users as prior weakly supervised information, we can quickly locate fake news in massive news and detect them in the early stages of dissemination. In this paper, we propose a novel Structure-aware Multi-head Attention Network (SMAN), which combines the news content, publishing, and reposting relations of publishers and users, to jointly optimize the fake news detection and credibility prediction tasks. In this way, we can explicitly exploit the credibility of publishers and users for early fake news detection. We conducted experiments on three real-world datasets, and the results show that SMAN can detect fake news in 4 hours with an accuracy of over 91%, which is much faster than the state-of-the-art models.



قيم البحث

اقرأ أيضاً

Fake news can significantly misinform people who often rely on online sources and social media for their information. Current research on fake news detection has mostly focused on analyzing fake news content and how it propagates on a network of user s. In this paper, we emphasize the detection of fake news by assessing its credibility. By analyzing public fake news data, we show that information on news sources (and authors) can be a strong indicator of credibility. Our findings suggest that an authors history of association with fake news, and the number of authors of a news article, can play a significant role in detecting fake news. Our approach can help improve traditional fake news detection methods, wherein content features are often used to detect fake news.
Nowadays, social network platforms have been the prime source for people to experience news and events due to their capacities to spread information rapidly, which inevitably provides a fertile ground for the dissemination of fake news. Thus, it is s ignificant to detect fake news otherwise it could cause public misleading and panic. Existing deep learning models have achieved great progress to tackle the problem of fake news detection. However, training an effective deep learning model usually requires a large amount of labeled news, while it is expensive and time-consuming to provide sufficient labeled news in actual applications. To improve the detection performance of fake news, we take advantage of the event correlations of news and propose an event correlation filtering method (ECFM) for fake news detection, mainly consisting of the news characterizer, the pseudo label annotator, the event credibility updater, and the news entropy selector. The news characterizer is responsible for extracting textual features from news, which cooperates with the pseudo label annotator to assign pseudo labels for unlabeled news by fully exploiting the event correlations of news. In addition, the event credibility updater employs adaptive Kalman filter to weaken the credibility fluctuations of events. To further improve the detection performance, the news entropy selector automatically discovers high-quality samples from pseudo labeled news by quantifying their news entropy. Finally, ECFM is proposed to integrate them to detect fake news in an event correlation filtering manner. Extensive experiments prove that the explainable introduction of the event correlations of news is beneficial to improve the detection performance of fake news.
Disinformation through fake news is an ongoing problem in our society and has become easily spread through social media. The most cost and time effective way to filter these large amounts of data is to use a combination of human and technical interve ntions to identify it. From a technical perspective, Natural Language Processing (NLP) is widely used in detecting fake news. Social media companies use NLP techniques to identify the fake news and warn their users, but fake news may still slip through undetected. It is especially a problem in more localised contexts (outside the United States of America). How do we adjust fake news detection systems to work better for local contexts such as in South Africa. In this work we investigate fake news detection on South African websites. We curate a dataset of South African fake news and then train detection models. We contrast this with using widely available fake news datasets (from mostly USA website). We also explore making the datasets more diverse by combining them and observe the differences in behaviour in writing between nations fake news using interpretable machine learning.
This is a paper for exploring various different models aiming at developing fake news detection models and we had used certain machine learning algorithms and we had used pretrained algorithms such as TFIDF and CV and W2V as features for processing textual data.
Amid the pandemic COVID-19, the world is facing unprecedented infodemic with the proliferation of both fake and real information. Considering the problematic consequences that the COVID-19 fake-news have brought, the scientific community has put effo rt to tackle it. To contribute to this fight against the infodemic, we aim to achieve a robust model for the COVID-19 fake-news detection task proposed at CONSTRAINT 2021 (FakeNews-19) by taking two separate approaches: 1) fine-tuning transformers based language models with robust loss functions and 2) removing harmful training instances through influence calculation. We further evaluate the robustness of our models by evaluating on different COVID-19 misinformation test set (Tweets-19) to understand model generalization ability. With the first approach, we achieve 98.13% for weighted F1 score (W-F1) for the shared task, whereas 38.18% W-F1 on the Tweets-19 highest. On the contrary, by performing influence data cleansing, our model with 99% cleansing percentage can achieve 54.33% W-F1 score on Tweets-19 with a trade-off. By evaluating our models on two COVID-19 fake-news test sets, we suggest the importance of model generalization ability in this task to step forward to tackle the COVID-19 fake-news problem in online social media platforms.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا