ﻻ يوجد ملخص باللغة العربية
The dissemination of fake news significantly affects personal reputation and public trust. Recently, fake news detection has attracted tremendous attention, and previous studies mainly focused on finding clues from news content or diffusion path. However, the required features of previous models are often unavailable or insufficient in early detection scenarios, resulting in poor performance. Thus, early fake news detection remains a tough challenge. Intuitively, the news from trusted and authoritative sources or shared by many users with a good reputation is more reliable than other news. Using the credibility of publishers and users as prior weakly supervised information, we can quickly locate fake news in massive news and detect them in the early stages of dissemination. In this paper, we propose a novel Structure-aware Multi-head Attention Network (SMAN), which combines the news content, publishing, and reposting relations of publishers and users, to jointly optimize the fake news detection and credibility prediction tasks. In this way, we can explicitly exploit the credibility of publishers and users for early fake news detection. We conducted experiments on three real-world datasets, and the results show that SMAN can detect fake news in 4 hours with an accuracy of over 91%, which is much faster than the state-of-the-art models.
Fake news can significantly misinform people who often rely on online sources and social media for their information. Current research on fake news detection has mostly focused on analyzing fake news content and how it propagates on a network of user
Nowadays, social network platforms have been the prime source for people to experience news and events due to their capacities to spread information rapidly, which inevitably provides a fertile ground for the dissemination of fake news. Thus, it is s
Disinformation through fake news is an ongoing problem in our society and has become easily spread through social media. The most cost and time effective way to filter these large amounts of data is to use a combination of human and technical interve
This is a paper for exploring various different models aiming at developing fake news detection models and we had used certain machine learning algorithms and we had used pretrained algorithms such as TFIDF and CV and W2V as features for processing textual data.
Amid the pandemic COVID-19, the world is facing unprecedented infodemic with the proliferation of both fake and real information. Considering the problematic consequences that the COVID-19 fake-news have brought, the scientific community has put effo