ترغب بنشر مسار تعليمي؟ اضغط هنا

Hydrodynamical interaction of stellar and planetary winds: effects of charge exchange and radiation pressure on the observed Ly$alpha$ absorption

70   0   0.0 ( 0 )
 نشر من قبل Alejandro Esquivel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Lyman $alpha$ observations of the transiting exoplanet HD 209458b enable the study of exoplanets exospheres exposed to stellar EUV fluxes, as well as the interacting stellar wind properties. In this study we present 3D hydrodynamical models for the stellar-planetary wind interaction including radiation pressure and charge exchange, together with photoionization, recombination and collisional ionization processes. Our models explore the contribution of the radiation pressure and charge exchange on the Ly$alpha$ absorption profile in a hydrodynamical framework, and for a single set of stellar wind parameters appropriate for HD 209458. We find that most of the absorption is produced by the material from the planet, with a secondary contribution of neutralized stellar ions by charge exchange. At the same time, the hydrodynamic shock heats up the planetary material, resulting in a broad thermal profile. Meanwhile, the radiation pressure yielded a small velocity shift of the absorbing material. While neither charge exchange nor radiation pressure provide enough neutrals at the velocity needed to explain the observations at $-100~mathrm{km~s^{-1}}$ individually, we find that the two effects combined with the broad thermal profile are able to explain the observations.

قيم البحث

اقرأ أيضاً

84 - Colin P. Johnstone 2021
Interactions between the winds of stars and the magnetospheres and atmospheres of planets involve many processes, including the acceleration of particles, heating of upper atmospheres, and a diverse range of atmospheric loss processes. Winds remove a ngular momentum from their host stars causing rotational spin-down and a decay in magnetic activity, which protects atmospheres from erosion. While wind interactions are strongly influenced by the X-ray and ultraviolet activity of the star and the chemical composition of the atmosphere, the role of planetary magnetic fields is unclear. In this chapter, I review our knowledge of the properties and evolution of stellar activity and winds and discuss the influences of these processes on the long term evolution of planetary atmospheres. I do not consider the large number of important processes taking place at the surfaces of planets that cause exchanges between the atmosphere and the planets interior.
We use 3D hydrodynamics simulations followed by synthetic line profile calculations to examine the effect increasing the strength of the stellar wind has on observed Ly-$alpha$ transits of a Hot Jupiter (HJ) and a Warm Neptune (WN). We find that incr easing the stellar wind mass-loss rate from 0 (no wind) to 100 times the solar mass-loss rate value causes reduced atmospheric escape in both planets (a reduction of 65% and 40% for the HJ and WN, respectively, compared to the no wind case). For weaker stellar winds (lower ram pressure), the reduction in planetary escape rate is very small. However, as the stellar wind becomes stronger, the interaction happens deeper in the planetary atmosphere and, once this interaction occurs below the sonic surface of the planetary outflow, further reduction in evaporation rates is seen. We classify these regimes in terms of the geometry of the planetary sonic surface. Closed refers to scenarios where the sonic surface is undisturbed, while open refers to those where the surface is disrupted. We find that the change in stellar wind strength affects the Ly-$alpha$ transit in a non-linear way. Although little change is seen in planetary escape rates ($simeq 5.5times 10^{11}$g/s) in the closed to partially open regimes, the Ly-$alpha$ absorption (sum of the blue [-300, -40 km/s] & red [40, 300 km/s] wings) changes from 21% to 6% as the stellar wind mass-loss rate is increased in the HJ set of simulations. For the WN simulations, escape rates of $simeq 6.5times 10^{10}$g/s can cause transit absorptions that vary from 8.8% to 3.7%, depending on the stellar wind strength. We conclude that the same atmospheric escape rate can produce a range of absorptions depending on the stellar wind and that neglecting this in the interpretation of Ly-$alpha$ transits can lead to underestimation of planetary escape rates.
The GJ 436 planetary system is an extraordinary system. The Neptune-size planet that orbits the M3 dwarf revealed in the Ly$alpha$ line an extended neutral hydrogen atmosphere. This material fills a comet-like tail that obscures the stellar disc for more than 10 hours after the planetary transit. Here, we carry out a series of 3D radiation hydrodynamic simulations to model the interaction of the stellar wind with the escaping planetary atmosphere. With these models, we seek to reproduce the $sim56%$ absorption found in Ly$alpha$ transits, simultaneously with the lack of absorption in H$alpha$ transit. Varying the stellar wind strength and the EUV stellar luminosity, we search for a set of parameters that best fit the observational data. Based on Ly$alpha$ observations, we found a stellar wind velocity at the position of the planet to be around [250-460] km s$^{-1}$ with a temperature of $[3-4]times10^5$ K. The stellar and planetary mass loss rates are found to be $2times 10^{-15}$ M$_odot$ yr$^{-1}$ and $sim[6-10]times10^9$ g s$^{-1}$, respectively, for a stellar EUV luminosity of $[0.8-1.6]times10^{27}$ erg s$^{-1}$. For the parameters explored in our simulations, none of our models present any significant absorption in the H$alpha$ line in agreement with the observations.
Using a global 3D, fully self-consistent, multi-fluid hydrodynamic model, we simulate the escaping upper atmosphere of the warm Neptune GJ436b, driven by the stellar XUV radiation impact and gravitational forces and interacting with the stellar wind. Under the typical parameters of XUV flux and stellar wind plasma expected for GJ436, we calculate in-transit absorption in Ly{alpha} and find that it is produced mostly by Energetic Neutral Atoms outside of the planetary Roche lobe, due to the resonant thermal line broadening. At the same time, the influence of radiation pressure has been shown to be insignificant. The modelled absorption is in good agreement with the observations and reveals such features as strong asymmetry between blue and red wings of the absorbed Ly{alpha} line profile, deep transit depth in the high velocity blue part of the line reaching more than 70%, and the timing of early ingress. On the other hand, the model produces significantly deeper and longer egress than in observations, indicating that there might be other processes and factors, still not accounted, that affect the interaction between the planetary escaping material and the stellar wind. At the same time, it is possible that the observational data, collected in different measurement campaigns, are affected by strong variations of the stellar wind parameters between the visits, and therefore, they cannot be reproduced altogether with the single set of model parameters.
Stellar wind and photon radiation interactions with a planet can cause atmospheric depletion, which may have a potentially catastrophic impact on a planets habitability. While the implications of photoevaporation on atmospheric erosion have been rese arched to some degree, studies of the influence of the stellar wind on atmospheric loss are in their infancy. Here, we use three-dimensional magnetohydrodynamic simulations to model the effect of the stellar wind on the magnetosphere and outflow of a hypothetical planet, modeled to have an H-rich evaporating envelope with a pre-defined mass loss rate, orbiting in the habitable zone close to a low-mass M dwarf. We take the TRAPPIST-1 system as a prototype, with our simulated planet situated at the orbit of TRAPPIST-1e. We show that the atmospheric outflow is dragged and accelerated upon interaction with the wind, resulting in a diverse range of planetary magnetosphere morphologies and plasma distributions as local stellar wind conditions change. We consider the implications of the wind-outflow interaction on potential hydrogen Lyman-alpha (Lya) observations of the planetary atmosphere during transits. The Lya observational signatures depend strongly on the local wind conditions at the time of the observation and can be subject to considerable variation on timescales as short as an hour. Our results indicate that observed variations in exoplanet Lya transit signatures could be explained by wind-outflow interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا