ﻻ يوجد ملخص باللغة العربية
We analyze 4,050 wide binary star systems involving a white dwarf (WD) and usually a main sequence (MS) star, drawn from the large sample assembled by citet[][hereafter, T20]{Tian_2020}. Using the modeling code BASE-9, we determine the systems ages, the WD progenitors ZAMS masses, the extinction values ($A_V$), and the distance moduli. Discarding the cases with poor age convergences, we obtain ages for 3,551 WDs, with a median age precision of $sigma_{tau}/tau = 20$%, and system ages typically in the range of 1-6 Gyr. We validated these ages against the very few known clusters and through cross-validation of 236 WD-WD binaries. Under the assumption that the components are co-eval in a binary system, this provides precise age constraints on the usually low-mass MS companions, mostly inaccessible by any other means.
Observational tests of stellar and Galactic chemical evolution call for the joint knowledge of a stars physical parameters, detailed element abundances, and precise age. For cool main-sequence (MS) stars the abundances of many elements can be measure
We present a catalogue of 73,221 white dwarf candidates extracted from the astrometric and photometric data of the recently published Gaia DR2 catalogue. White dwarfs were selected from the Gaia Hertzsprung-Russell diagram with the aid of the most up
We measure dynamical masses for five objects--three ultracool dwarfs, one low-mass star, and one white dwarf--by fitting orbits to a combination of the Hipparcos-Gaia Catalog of Accelerations, literature radial velocities, and relative astrometry. Ou
We present the first metal-polluted single white dwarf star identified through Gaia DR2. GaiaJ1738-0826, selected from color and absolute magnitude cuts in the Gaia DR2 data, was discovered to have strong Ca~II absorption in initial spectroscopic cha
This paper provides long-period and revised orbits for barium and S stars adding to previously published ones. The sample of barium stars with strong anomalies comprise all such stars present in the Lu et al. catalogue. We find orbital motion for all