ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise Ages of Field Stars from White Dwarf Companions

112   0   0.0 ( 0 )
 نشر من قبل Morgan Fouesneau
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observational tests of stellar and Galactic chemical evolution call for the joint knowledge of a stars physical parameters, detailed element abundances, and precise age. For cool main-sequence (MS) stars the abundances of many elements can be measured from spectroscopy, but ages are very hard to determine. The situation is different if the MS star has a white dwarf (WD) companion and a known distance, as the age of such a binary system can then be determined precisely from the photometric properties of the cooling WD. As a pilot study for obtaining precise age determinations of field MS stars, we identify nearly one hundred candidates for such wide binary systems: a faint WD whose GPS1 proper motion matches that of a brighter MS star in Gaia/TGAS with a good parallax ($sigma_varpi/varpile 0.05$). We model the WDs multi-band photometry with the BASE-9 code using this precise distance (assumed to be common for the pair) and infer ages for each binary system. The resulting age estimates are precise to $le 10%$ ($le 20%$) for $42$ ($67$) MS-WD systems. Our analysis more than doubles the number of MS-WD systems with precise distances known to date, and it boosts the number of such systems with precise age determination by an order of magnitude. With the advent of the Gaia DR2 data, this approach will be applicable to a far larger sample, providing ages for many MS stars (that can yield detailed abundances for over 20 elements), especially in the age range 2 to 8,Gyr, where there are only few known star clusters.

قيم البحث

اقرأ أيضاً

We analyze 4,050 wide binary star systems involving a white dwarf (WD) and usually a main sequence (MS) star, drawn from the large sample assembled by citet[][hereafter, T20]{Tian_2020}. Using the modeling code BASE-9, we determine the systems ages, the WD progenitors ZAMS masses, the extinction values ($A_V$), and the distance moduli. Discarding the cases with poor age convergences, we obtain ages for 3,551 WDs, with a median age precision of $sigma_{tau}/tau = 20$%, and system ages typically in the range of 1-6 Gyr. We validated these ages against the very few known clusters and through cross-validation of 236 WD-WD binaries. Under the assumption that the components are co-eval in a binary system, this provides precise age constraints on the usually low-mass MS companions, mostly inaccessible by any other means.
This paper provides long-period and revised orbits for barium and S stars adding to previously published ones. The sample of barium stars with strong anomalies comprise all such stars present in the Lu et al. catalogue. We find orbital motion for all barium and extrinsic S stars monitored. We obtain the longest period known so far for a spectroscopic binary involving an S star, namely 57 Peg with a period of the order of 100 - 500 yr. We present the mass distribution for the barium stars, which ranges from 1 to 3 Msun, with a tail extending up to 5 Msun in the case of mild barium stars. This high-mass tail comprises mostly high-metallicity objects ([Fe/H] >= -0.1). Mass functions are compatible with WD companions and we derive their mass distribution which ranges from 0.5 to 1 Msun. Using the initial - final mass relationship established for field WDs, we derived the distribution of the mass ratio q = MAGB,ini / MBa (where MAGB, ini is the WD progenitor initial mass, i.e., the mass of the system former primary component) which is a proxy for the initial mass ratio. It appears that the distribution of q is highly non uniform, and significantly different for mild and strong barium stars, the latter being characterized by values mostly in excess of 1.4, whereas mild barium stars occupy the range 1 - 1.4. We investigate as well the correlation between abundances, orbital periods, metallicities, and masses (barium star and WD companion). The 105 orbits of post-mass-transfer systems presented in this paper pave the way for a comparison with binary-evolution models.
We investigate the old open cluster M67 using ultraviolet photometric data of Ultra-Violet Imaging Telescope in multi-filter far-UV bands. M67, well known for the presence of several blue straggler stars (BSS), has been put to detailed tests to under stand their formation pathways. Currently, there are three accepted formation channels: mass transfer due to Roche-lobe overflow in binary systems, stellar mergers either due to dynamical collisions or through coalescence of close binaries. So far, there had not been any confirmed detection of a white dwarf (WD) companion to any of the BSSs in this cluster. Here, we present the detection of WD companions to 5 bright BSSs in M67. The multiwavelength spectral energy distributions covering 0.12 -11.5 $mu$m range, were found to require binary spectral fits for 5 BSSs, consisting of a cool (BSS) and a hot companion. The parameters (Luminosity, Temperature, Radius and Mass) of the hot companions suggest them to be WDs with mass in the range 0.2 - 0.35 M$_{odot}$ with T$_{eff}$ $sim$ 11000 - 24000 K.
The number of spatially unresolved white dwarf plus main-sequence star binaries has increased rapidly in the last decade, jumping from only ~30 in 2003 to over 3000. However, in the majority of known systems the companion to the white dwarf is a low mass M dwarf, since these are relatively easy to identify from optical colours and spectra. White dwarfs with more massive FGK type companions have remained elusive due to the large difference in optical brightness between the two stars. In this paper we identify 934 main-sequence FGK stars from the Radial Velocity Experiment (RAVE) survey in the southern hemisphere and the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey in the northern hemisphere, that show excess flux at ultraviolet wavelengths which we interpret as the likely presence of a white dwarf companion. We obtained Hubble Space Telescope ultraviolet spectra for nine systems which confirmed that the excess is indeed caused, in all cases, by a hot compact companion, eight being white dwarfs and one a hot subdwarf or pre-helium white dwarf, demonstrating that this sample is very clean. We also address the potential of this sample to test binary evolution models and type Ia supernovae formation channels.
We present the second paper of a series of publications aiming at obtaining a better understanding regarding the nature of type Ia supernovae (SNIa) progenitors by studying a large sample of detached F, G and K main sequence stars in close orbits wit h white dwarf companions (i.e. WD+FGK binaries). We employ the LAMOST (Large Sky Area Multi-Object Fibre Spectroscopic Telescope) data release 4 spectroscopic data base together with GALEX (Galaxy Evolution Explorer) ultraviolet fluxes to identify 1,549 WD+FGK binary candidates (1,057 of which are new), thus doubling the number of known sources. We measure the radial velocities of 1,453 of these binaries from the available LAMOST spectra and/or from spectra obtained by us at a wide variety of different telescopes around the globe. The analysis of the radial velocity data allows us to identify 24 systems displaying more than 3sigma radial velocity variation that we classify as close binaries. We also discuss the fraction of close binaries among WD+FGK systems, which we find to be ~10 per cent, and demonstrate that high-resolution spectroscopy is required to efficiently identify double-degenerate SNIa progenitor candidates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا