ﻻ يوجد ملخص باللغة العربية
The success of emotional conversation systems depends on sufficient perception and appropriate expression of emotions. In a real-world conversation, we firstly instinctively perceive emotions from multi-source information, including the emotion flow of dialogue history, facial expressions, and personalities of speakers, and then express suitable emotions according to our personalities, but these multiple types of information are insufficiently exploited in emotional conversation fields. To address this issue, we propose a heterogeneous graph-based model for emotional conversation generation. Specifically, we design a Heterogeneous Graph-Based Encoder to represent the conversation content (i.e., the dialogue history, its emotion flow, facial expressions, and speakers personalities) with a heterogeneous graph neural network, and then predict suitable emotions for feedback. After that, we employ an Emotion-Personality-Aware Decoder to generate a response not only relevant to the conversation context but also with appropriate emotions, by taking the encoded graph representations, the predicted emotions from the encoder and the personality of the current speaker as inputs. Experimental results show that our model can effectively perceive emotions from multi-source knowledge and generate a satisfactory response, which significantly outperforms previous state-of-the-art models.
Multi-paragraph reasoning is indispensable for open-domain question answering (OpenQA), which receives less attention in the current OpenQA systems. In this work, we propose a knowledge-enhanced graph neural network (KGNN), which performs reasoning o
Personalized review generation (PRG) aims to automatically produce review text reflecting user preference, which is a challenging natural language generation task. Most of previous studies do not explicitly model factual description of products, tend
The encoder-decoder framework achieves state-of-the-art results in keyphrase generation (KG) tasks by predicting both present keyphrases that appear in the source document and absent keyphrases that do not. However, relying solely on the source docum
Cross-lingual text classification aims at training a classifier on the source language and transferring the knowledge to target languages, which is very useful for low-resource languages. Recent multilingual pretrained language models (mPLM) achieve
Graph neural networks for heterogeneous graph embedding is to project nodes into a low-dimensional space by exploring the heterogeneity and semantics of the heterogeneous graph. However, on the one hand, most of existing heterogeneous graph embedding