ﻻ يوجد ملخص باللغة العربية
Convolutional neural networks (CNNs) are a promising technique for automated glaucoma diagnosis from images of the fundus, and these images are routinely acquired as part of an ophthalmic exam. Nevertheless, CNNs typically require a large amount of well-labeled data for training, which may not be available in many biomedical image classification applications, especially when diseases are rare and where labeling by experts is costly. This paper makes two contributions to address this issue: (1) It extends the conventional twin neural network and introduces a training method for low-shot learning when labeled data are limited and imbalanced, and (2) it introduces a novel semi-supervised learning strategy that uses additional unlabeled training data to achieve greater accuracy. Our proposed multi-task twin neural network (MTTNN) can employ any backbone CNN, and we demonstrate with four backbone CNNs that its accuracy with limited training data approaches the accuracy of backbone CNNs trained with a dataset that is 50 times larger. We also introduce One-Vote Veto (OVV) self-training, a semi-supervised learning strategy that is designed specifically for MTTNNs. By taking both self-predictions and contrastive-predictions of the unlabeled training data into account, OVV self-training provides additional pseudo labels for fine tuning a pretrained MTTNN. Using a large (imbalanced) dataset with 66715 fundus photographs acquired over 15 years, extensive experimental results demonstrate the effectiveness of low-shot learning with MTTNN and semi-supervised learning with OVV self-training. Three additional, smaller clinical datasets of fundus images acquired under different conditions (cameras, instruments, locations, populations) are used to demonstrate the generalizability of the proposed methods. Source code and pretrained models will be publicly available upon publication.
We present a multiview pseudo-labeling approach to video learning, a novel framework that uses complementary views in the form of appearance and motion information for semi-supervised learning in video. The complementary views help obtain more reliab
Visual cognition of primates is superior to that of artificial neural networks in its ability to envision a visual object, even a newly-introduced one, in different attributes including pose, position, color, texture, etc. To aid neural networks to e
Landmark localization plays an important role in medical image analysis. Learning based methods, including CNN and GCN, have demonstrated the state-of-the-art performance. However, most of these methods are fully-supervised and heavily rely on manual
Recent advances in one-shot semi-supervised learning have lowered the barrier for deep learning of new applications. However, the state-of-the-art for semi-supervised learning is slow to train and the performance is sensitive to the choices of the la
The predicament in semi-supervised few-shot learning (SSFSL) is to maximize the value of the extra unlabeled data to boost the few-shot learner. In this paper, we propose a Poisson Transfer Network (PTN) to mine the unlabeled information for SSFSL fr