ترغب بنشر مسار تعليمي؟ اضغط هنا

Microscopic conservation laws for integrable lattice models

63   0   0.0 ( 0 )
 نشر من قبل Benjamin Harrop-Griffiths
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider two discrete completely integrable evolutions: the Toda Lattice and the Ablowitz-Ladik system. The principal thrust of the paper is the development of microscopic conservation laws that witness the conservation of the perturbation determinant under these dynamics. In this way, we obtain discrete analogues of objects that we found essential in our recent analyses of KdV, NLS, and mKdV. In concert with this, we revisit the classical topic of microscopic conservation laws attendant to the (renormalized) trace of the Greens function.

قيم البحث

اقرأ أيضاً

57 - Denis Serre 2018
We discuss the minimal integrability needed for the initial data, in order that the Cauchy problem for a multi-dimensional conservation law admit an entropy solution. In particular we allow unbounded initial data. We investigate also the decay of the solution as time increases, in relation with the nonlinearity. The main ingredient is our recent theory of divergence-free positive symmetric tensor. We apply in particular the so-called compensated integrability to a tensor which generalizes the one that L. Tartar used in one space dimension. It allows us to establish a Strichartz-like inequality, in a quasilinear context. This program is carried out in details for a multi-dimensional version of the Burgers equation.
We consider a class of multidimensional conservation laws with vanishing nonlinear diffusion and dispersion terms. Under a condition on the relative size of the diffusion and dispersion coefficients, we establish that the diffusive-dispersive solutio ns are uniformly bounded in a space Lp ($p$ arbitrary large, depending on the nonlinearity of the diffusion) and converge to the classical, entropy solution of the corresponding multidimensional, hyperbolic conservation law. Previous results were restricted to one-dimensional equations and specific spaces Lp. Our proof is based on DiPernas uniqueness theorem in the class of entropy measure-valued solutions.
One dimensional systems sometimes show pathologically slow decay of currents. This robustness can be traced to the fact that an integrable model is nearby in parameter space. In integrable models some part of the current can be conserved, explaining this slow decay. Unfortunately, although this conservation law is formally anticipated, in practice it has been difficult to find in concrete cases, such as the Heisenberg model. We investigate this issue both analytically and numerically and find that the appropriate conservation law can be a non-analytic combination of the known local conservation laws and hence is invisible to elementary assumptions.
74 - Denis Serre 2021
We prove the decay of the L 2-distance from the solution u(t) of a hyperbolic scalar conservation law, to some convex, flow-invariant target sets.
80 - Geng Chen 2020
Let a 1-d system of hyperbolic conservation laws, with two unknowns, be endowed with a convex entropy. We consider the family of small $BV$ functions which are global solutions of this equation. For any small $BV$ initial data, such global solutions are known to exist. Moreover, they are known to be unique among $BV$ solutions verifying either the so-called Tame Oscillation Condition, or the Bounded Variation Condition on space-like curves. In this paper, we show that these solutions are stable in a larger class of weak (and possibly not even $BV$) solutions of the system. This result extends the classical weak-strong uniqueness results which allow comparison to a smooth solution. Indeed our result extends these results to a weak-$BV$ uniqueness result, where only one of the solutions is supposed to be small $BV$, and the other solution can come from a large class. As a consequence of our result, the Tame Oscillation Condition, and the Bounded Variation Condition on space-like curves are not necessary for the uniqueness of solutions in the $BV$ theory, in the case of systems with 2 unknowns. The method is $L^2$ based. It builds up from the theory of a-contraction with shifts, where suitable weight functions $a$ are generated via the front tracking method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا