ترغب بنشر مسار تعليمي؟ اضغط هنا

Uniqueness and weak-BV stability for $2times 2$ conservation laws

81   0   0.0 ( 0 )
 نشر من قبل Sam Krupa
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Geng Chen




اسأل ChatGPT حول البحث

Let a 1-d system of hyperbolic conservation laws, with two unknowns, be endowed with a convex entropy. We consider the family of small $BV$ functions which are global solutions of this equation. For any small $BV$ initial data, such global solutions are known to exist. Moreover, they are known to be unique among $BV$ solutions verifying either the so-called Tame Oscillation Condition, or the Bounded Variation Condition on space-like curves. In this paper, we show that these solutions are stable in a larger class of weak (and possibly not even $BV$) solutions of the system. This result extends the classical weak-strong uniqueness results which allow comparison to a smooth solution. Indeed our result extends these results to a weak-$BV$ uniqueness result, where only one of the solutions is supposed to be small $BV$, and the other solution can come from a large class. As a consequence of our result, the Tame Oscillation Condition, and the Bounded Variation Condition on space-like curves are not necessary for the uniqueness of solutions in the $BV$ theory, in the case of systems with 2 unknowns. The method is $L^2$ based. It builds up from the theory of a-contraction with shifts, where suitable weight functions $a$ are generated via the front tracking method.



قيم البحث

اقرأ أيضاً

74 - Denis Serre 2021
We prove the decay of the L 2-distance from the solution u(t) of a hyperbolic scalar conservation law, to some convex, flow-invariant target sets.
We consider two discrete completely integrable evolutions: the Toda Lattice and the Ablowitz-Ladik system. The principal thrust of the paper is the development of microscopic conservation laws that witness the conservation of the perturbation determi nant under these dynamics. In this way, we obtain discrete analogues of objects that we found essential in our recent analyses of KdV, NLS, and mKdV. In concert with this, we revisit the classical topic of microscopic conservation laws attendant to the (renormalized) trace of the Greens function.
Turing patterns on unbounded domains have been widely studied in systems of reaction-diffusion equations. However, up to now, they have not been studied for systems of conservation laws. Here, we (i) derive conditions for Turing instability in conser vation laws and (ii) use these conditions to find families of periodic solutions bifurcating from uniform states, numerically continuing these families into the large-amplitude regime. For the examples studied, numerical stability analysis suggests that stable periodic waves can emerge either from supercritical Turing bifurcations or, via secondary bifurcation as amplitude is increased, from sub-critical Turing bifurcations. This answers in the affirmative a question of Oh-Zumbrun whether stable periodic solutions of conservation laws can occur. Determination of a full small-amplitude stability diagram-- specifically, determination of rigorous Eckhaus-type stability conditions-- remains an interesting open problem.
We consider a class of multidimensional conservation laws with vanishing nonlinear diffusion and dispersion terms. Under a condition on the relative size of the diffusion and dispersion coefficients, we establish that the diffusive-dispersive solutio ns are uniformly bounded in a space Lp ($p$ arbitrary large, depending on the nonlinearity of the diffusion) and converge to the classical, entropy solution of the corresponding multidimensional, hyperbolic conservation law. Previous results were restricted to one-dimensional equations and specific spaces Lp. Our proof is based on DiPernas uniqueness theorem in the class of entropy measure-valued solutions.
We propose a system of conservation laws with relaxation source terms (i.e. balance laws) for non-isothermal viscoelastic flows of Maxwell fluids. The system is an extension of the polyconvex elastodynamics of hyperelastic bodies using additional str ucture variables. It is obtained by writing the Helmholtz free energy as the sum of a volumetric energy density (function of the determinant of the deformation gradient det F and the temperature $theta$ like the standard perfect-gas law or Noble-Abel stiffened-gas law) plus a polyconvex strain energy density function of F, $theta$ and of symmetric positive-definite structure tensors that relax at a characteristic time scale. One feature of our model is that it unifies various ideal materials ranging from hyperelastic solids to perfect fluids, encompassing fluids with memory like Maxwell fluids. We establish a strictly convex mathematical entropy to show that the system is symmetric-hyperbolic. Another feature of the proposed model is therefore the short-time existence and uniqueness of smooth solutions, which define genuinely causal viscoelastic flows with waves propagating at finite speed. In heat-conductors, we complement the system by a Maxwell-Cattaneo equation for an energy-flux variable. The system is still symmetric-hyperbolic, and smooth evolutions with finite-speed waves remain well-defined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا