ترغب بنشر مسار تعليمي؟ اضغط هنا

Joint Entity and Relation Canonicalization in Open Knowledge Graphs using Variational Autoencoders

68   0   0.0 ( 0 )
 نشر من قبل Sarthak Dash
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Noun phrases and relation phrases in open knowledge graphs are not canonicalized, leading to an explosion of redundant and ambiguous subject-relation-object triples. Existing approaches to face this problem take a two-step approach: first, they generate embedding representations for both noun and relation phrases, then a clustering algorithm is used to group them using the embeddings as features. In this work, we propose Canonicalizing Using Variational AutoEncoders (CUVA), a joint model to learn both embeddings and cluster assignments in an end-to-end approach, which leads to a better vector representation for the noun and relation phrases. Our evaluation over multiple benchmarks shows that CUVA outperforms the existing state of the art approaches. Moreover, we introduce CanonicNell a novel dataset to evaluate entity canonicalization systems.



قيم البحث

اقرأ أيضاً

Commonsense knowledge (CSK) supports a variety of AI applications, from visual understanding to chatbots. Prior works on acquiring CSK, such as ConceptNet, have compiled statements that associate concepts, like everyday objects or activities, with pr operties that hold for most or some instances of the concept. Each concept is treated in isolation from other concepts, and the only quantitative measure (or ranking) of properties is a confidence score that the statement is valid. This paper aims to overcome these limitations by introducing a multi-faceted model of CSK statements and methods for joint reasoning over sets of inter-related statements. Our model captures four different dimensions of CSK statements: plausibility, typicality, remarkability and salience, with scoring and ranking along each dimension. For example, hyenas drinking water is typical but not salient, whereas hyenas eating carcasses is salient. For reasoning and ranking, we develop a method with soft constraints, to couple the inference over concepts that are related in in a taxonomic hierarchy. The reasoning is cast into an integer linear programming (ILP), and we leverage the theory of reduction costs of a relaxed LP to compute informative rankings. This methodology is applied to several large CSK collections. Our evaluation shows that we can consolidate these inputs into much cleaner and more expressive knowledge. Results are available at https://dice.mpi-inf.mpg.de.
Extracting relational triples from texts is a fundamental task in knowledge graph construction. The popular way of existing methods is to jointly extract entities and relations using a single model, which often suffers from the overlapping triple pro blem. That is, there are multiple relational triples that share the same entities within one sentence. In this work, we propose an effective cascade dual-decoder approach to extract overlapping relational triples, which includes a text-specific relation decoder and a relation-corresponded entity decoder. Our approach is straightforward: the text-specific relation decoder detects relations from a sentence according to its text semantics and treats them as extra features to guide the entity extraction; for each extracted relation, which is with trainable embedding, the relation-corresponded entity decoder detects the corresponding head and tail entities using a span-based tagging scheme. In this way, the overlapping triple problem is tackled naturally. Experiments on two public datasets demonstrate that our proposed approach outperforms state-of-the-art methods and achieves better F1 scores under the strict evaluation metric. Our implementation is available at https://github.com/prastunlp/DualDec.
Semantic embedding has been widely investigated for aligning knowledge graph (KG) entities. Current methods have explored and utilized the graph structure, the entity names and attributes, but ignore the ontology (or ontological schema) which contain s critical meta information such as classes and their membership relationships with entities. In this paper, we propose an ontology-guided entity alignment method named OntoEA, where both KGs and their ontologies are jointly embedded, and the class hierarchy and the class disjointness are utilized to avoid false mappings. Extensive experiments on seven public and industrial benchmarks have demonstrated the state-of-the-art performance of OntoEA and the effectiveness of the ontologies.
Knowledge graph entity typing aims to infer entities missing types in knowledge graphs which is an important but under-explored issue. This paper proposes a novel method for this task by utilizing entities contextual information. Specifically, we des ign two inference mechanisms: i) N2T: independently use each neighbor of an entity to infer its type; ii) Agg2T: aggregate the neighbors of an entity to infer its type. Those mechanisms will produce multiple inference results, and an exponentially weighted pooling method is used to generate the final inference result. Furthermore, we propose a novel loss function to alleviate the false-negative problem during training. Experiments on two real-world KGs demonstrate the effectiveness of our method. The source code and data of this paper can be obtained from https://github.com/CCIIPLab/CET.
Entity alignment seeks to find entities in different knowledge graphs (KGs) that refer to the same real-world object. Recent advancement in KG embedding impels the advent of embedding-based entity alignment, which encodes entities in a continuous emb edding space and measures entity similarities based on the learned embeddings. In this paper, we conduct a comprehensive experimental study of this emerging field. We survey 23 recent embedding-based entity alignment approaches and categorize them based on their techniques and characteristics. We also propose a new KG sampling algorithm, with which we generate a set of dedicated benchmark datasets with various heterogeneity and distributions for a realistic evaluation. We develop an open-source library including 12 representative embedding-based entity alignment approaches, and extensively evaluate these approaches, to understand their strengths and limitations. Additionally, for several directions that have not been explored in current approaches, we perform exploratory experiments and report our preliminary findings for future studies. The benchmark datasets, open-source library and experimental results are all accessible online and will be duly maintained.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا