ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of 4- and 6-magnon bound-states in the spin-anisotropic frustrated antiferromagnet FeI$_2$

141   0   0.0 ( 0 )
 نشر من قبل Ana\\\"elle Legros
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin-waves e.g. magnons are the conventional elementary excitations of ordered magnets. However, other possibilities exist. For instance, magnon bound-states can arise due to attractive magnon-magnon interactions and drastically impact the static and dynamic properties of materials. Here, we demonstrate a zoo of distinct multi-magnon quasiparticles in the frustrated spin-1 triangular antiferromagnet FeI$_2$ using time-domain terahertz spectroscopy. The energy-magnetic field excitation spectrum contains signatures of one-, two-, four- and six-magnon bound-states, which we analyze using an exact diagonalization approach for a dilute gas of interacting magnons. The two-magnon single-ion bound states occur due to strong anisotropy and the preponderance of even higher order excitations arises from the tendency of the single-ion bound states to themselves form bound states due to their very flat dispersion. This menagerie of tunable interacting quasiparticles provides a unique platform in a condensed matter setting that is reminiscent of the few-body quantum phenomena central to cold-atom, nuclear, and particle physics experiments.

قيم البحث

اقرأ أيضاً

Here we report on the formation of two and three magnon bound states in the quasi-one-dimensional antiferromagnet $alpha$-NaMnO$_2$, where the single-ion, uniaxial anisotropy inherent to the Mn$^{3+}$ ions in this material provides a binding mechanis m capable of stabilizing higher order magnon bound states. While such states have long remained elusive in studies of antiferromagnetic chains, neutron scattering data presented here demonstrate that higher order $n>2$ composite magnons exist, and, specifically, that a weak three-magnon bound state is detected below the antiferromagnetic ordering transition of NaMnO$_2$. We corroborate our findings with exact numerical simulations of a one-dimensional Heisenberg chain with easy-axis anisotropy using matrix-product state techniques, finding a good quantitative agreement with the experiment. These results establish $alpha$-NaMnO$_2$ as a unique platform for exploring the dynamics of composite magnon states inherent to a classical antiferromagnetic spin chain with Ising-like single ion anisotropy.
Here we present a neutron scattering-based study of magnetic excitations and magnetic order in NaYbO$_2$ under the application of an external magnetic field. The crystal electric field-split $J = 7/2$ multiplet structure is determined, revealing a mi xed $|m_z>$ ground state doublet and is consistent with a recent report Ding et al. [1]. Our measurements further suggest signatures of exchange effects in the crystal field spectrum, manifested by a small splitting in energy of the transition into the first excited doublet. The field-dependence of the low-energy magnetic excitations across the transition from the quantum disordered ground state into the fluctuation-driven ordered regime is analyzed. Signs of a first-order phase transition into a noncollinear ordered state are revealed at the upper-field phase boundary of the ordered regime, and higher order magnon scattering, suggestive of strong magnon-magnon interactions, is resolved within the previously reported $up-up-down$ phase. Our results reveal a complex phase diagram of field-induced order and spin excitations within NaYbO$_2$ and demonstrate the dominant role of quantum fluctuations cross a broad range of fields within its interlayer frustrated triangular lattice.
Barlowite, Cu$_{4}$(OH)$_{6}$FBr, has attracted much attention as the parent compound of a new series of quantum spin liquid candidates, Zn$_{x}$Cu$_{4-x}$(OH)$_{6}$FBr. While it is known to undergo a magnetic phase transition to a long-range ordered state at $T_{N} = 15$ K, there is still no consensus over either its nuclear or magnetic structures. Here, we use comprehensive powder neutron diffraction studies on deuterated samples of barlowite to demonstrate that the only space group consistent with the observed nuclear and magnetic diffraction at low-temperatures is the orthorhombic $Pnma$ space group. We furthermore conclude that the magnetic intensity at $T < T_{N}$ is correctly described by the $Pn^prime m^prime a$ magnetic space group, which crucially allows the ferromagnetic component observed in previous single-crystal and powder magnetisation measurements. As such, the magnetic structure of barlowite resembles that of the related material clinoatacamite, Cu$_{4}$(OH)$_{6}$Cl$_{2}$, the parent compound of the well-known quantum spin liquid candidate hebertsmithite, ZnCu$_{3}$(OH)$_{6}$Cl$_{2}$.
Single crystal neutron diffraction, inelastic neutron scattering and electron spin resonance experiments are used to study the magnetic structure and spin waves in Pb$_2$VO(PO$_4$)$_2$, a prototypical layered $S=1/2$ ferromagnet with frustrating next nearest neighbor antiferromagnetic interactions. The observed excitation spectrum is found to be inconsistent with a simple square lattice model previously proposed for this material. At least four distinct exchange coupling constants are required to reproduce the measured spin wave dispersion. The degree of magnetic frustration is correspondingly revised and found to be substantially smaller than in all previous estimates.
Phonon-assisted 2-magnon absorption is studied at T=4 K in the spin-1/2 two-leg ladders of Ca_14-x La_x Cu_24 O_41 (x=5 and 4) for polarization of the electrical field parallel to the legs and the rungs, respectively. Two peaks at about 2140 and 2800 1/cm reflect van-Hove singularities in the density of states of the strongly dispersing 2-magnon singlet bound state, and a broad peak at about 4000 1/cm is identified with the 2-magnon continuum. Two different theoretical approaches (Jordan-Wigner fermions and perturbation theory) describe the data very well for J_parallel = 1050 - 1100 1/cm and J_parallel / J_perp = 1 - 1.1. A striking similarity of the high-energy continuum absorption of the ladders and of the undoped high T_c cuprates is observed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا