ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a general approach to optimize anchor boxes for object detection. Nowadays, anchor boxes are widely adopted in state-of-the-art detection frameworks. However, these frameworks usually pre-define anchor box shapes in heuristic ways and fix the sizes during training. To improve the accuracy and reduce the effort of designing anchor boxes, we propose to dynamically learn the anchor shapes, which allows the anchors to automatically adapt to the data distribution and the network learning capability. The learning approach can be easily implemented with stochastic gradient descent and can be plugged into any anchor box-based detection framework. The extra training cost is almost negligible and it has no impact on the inference time or memory cost. Exhaustive experiments demonstrate that the proposed anchor optimization method consistently achieves significant improvement ($ge 1%$ mAP absolute gain) over the baseline methods on several benchmark datasets including Pascal VOC 07+12, MS COCO and Brainwash. Meanwhile, the robustness is also verified towards different anchor initialization methods and the number of anchor shapes, which greatly simplifies the problem of anchor box design.
Classification and localization are two pillars of visual object detectors. However, in CNN-based detectors, these two modules are usually optimized under a fixed set of candidate (or anchor) bounding boxes. This configuration significantly limits th
Arbitrary-oriented objects widely appear in natural scenes, aerial photographs, remote sensing images, etc., thus arbitrary-oriented object detection has received considerable attention. Many current rotation detectors use plenty of anchors with diff
Deep neural networks have been demonstrated to be vulnerable to adversarial attacks: subtle perturbation can completely change prediction result. The vulnerability has led to a surge of research in this direction, including adversarial attacks on obj
Anchor free methods have defined the new frontier in state-of-the-art object detection researches where accurate bounding box estimation is the key to the success of these methods. However, even the bounding box has the highest confidence score, it i
We motivate and present feature selective anchor-free (FSAF) module, a simple and effective building block for single-shot object detectors. It can be plugged into single-shot detectors with feature pyramid structure. The FSAF module addresses two li