ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically controlled emission from singlet and triplet exciton species in atomically thin light emitting diodes

90   0   0.0 ( 0 )
 نشر من قبل Andrew Y. Joe
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Excitons are composite bosons that can feature spin singlet and triplet states. In usual semiconductors, without an additional spin-flip mechanism, triplet excitons are extremely inefficient optical emitters. Transition metal dichalcogenides (TMDs), with their large spin-orbit coupling, have been of special interest for valleytronic applications for their coupling of circularly polarized light to excitons with selective valley and spin$^{1-4}$. In atomically thin MoSe$_2$/WSe$_2$ TMD van der Waals (vdW) heterostructures, the unique atomic registry of vdW layers provides a quasi-angular momentum to interlayer excitons$^{5,6}$, enabling emission from otherwise dark spin triplet excitons. Here, we report electrically tunable spin singlet and triplet exciton emission from atomically aligned TMD heterostructures. We confirm the spin configurations of the light-emitting excitons employing magnetic fields to measure effective exciton g-factors. The interlayer tunneling current across the TMD vdW heterostructure enables the electrical generation of singlet and triplet exciton emission in this atomically thin PN junction. We demonstrate electrically tunability between the singlet and triplet excitons that are generated by charge injection. Atomically thin TMD heterostructure light emitting diodes thus enables a route for optoelectronic devices that can configure spin and valley quantum states independently by controlling the atomic stacking registry.

قيم البحث

اقرأ أيضاً

The low-lying singlet and triplet spectrum in conjugated polymers clearly show that the mechanism proposed by Lin et al. to explain their electric field dependence of singlet to triplet yield ratios is wrong. This comment, from theoretical spectrum o btained for long polyenes, shows that the phonon bottleneck proposed by Lin et al. for triplets in polyenes cannot exist.
Light-emitting diodes are of importance for lighting, displays, optical interconnects, logic and sensors. Hence the development of new systems that allow improvements in their efficiency, spectral properties, compactness and integrability could have significant ramifications. Monolayer transition metal dichalcogenides have recently emerged as interesting candidates for optoelectronic applications due to their unique optical properties. Electroluminescence has already been observed from monolayer MoS2 devices. However, the electroluminescence efficiency was low and the linewidth broad due both to the poor optical quality of MoS2 and to ineffective contacts. Here, we report electroluminescence from lateral p-n junctions in monolayer WSe2 induced electrostatically using a thin boron nitride support as a dielectric layer with multiple metal gates beneath. This structure allows effective injection of electrons and holes, and combined with the high optical quality of WSe2 it yields bright electroluminescence with 1000 times smaller injection current and 10 times smaller linewidth than in MoS2. Furthermore, by increasing the injection bias we can tune the electroluminescence between regimes of impurity-bound, charged, and neutral excitons. This system has the required ingredients for new kinds of optoelectronic devices such as spin- and valley-polarized light-emitting diodes, on-chip lasers, and two-dimensional electro-optic modulators.
We demonstrate the reduction of the inhomogeneous linewidth of the free excitons in atomically thin transition metal dichalcogenides (TMDCs) MoSe$_{2}$, WSe$_{2}$ and MoS$_{2}$ by encapsulation within few nanometer thick hBN. Encapsulation is shown t o result in a significant reduction of the 10K excitonic linewidths down to $sim3.5 text{ meV}$ for n-MoSe$_{2}$, $sim5.0 text{ meV}$ for p-WSe$_{2}$ and $sim4.8 text{ meV}$ for n-MoS$_{2}$. Evidence is obtained that the hBN environment effectively lowers the Fermi level since the relative spectral weight shifts towards the neutral exciton emission in n-doped TMDCs and towards charged exciton emission in p-doped TMDCs. Moreover, we find that fully encapsulated MoS$_{2}$ shows resolvable exciton and trion emission even after high power density excitation in contrast to non-encapsulated materials. Our findings suggest that encapsulation of mechanically exfoliated few-monolayer TMDCs within nanometer thick hBN dramatically enhances optical quality, producing ultra-narrow linewidths that approach the homogeneous limit.
While conventional semiconductor technology relies on the manipulation of electrical charge for the implementation of computational logic, additional degrees of freedom such as spin and valley offer alternative avenues for the encoding of information . In transition metal dichalcogenide (TMD) monolayers, where spin-valley locking is present, strong retention of valley chirality has been reported for MoS$_2$, WSe$_2$ and WS$_2$ while MoSe$_2$ shows anomalously low valley polarisation retention. In this work, chiral selectivity of MoSe$_2$ cavity polaritons under helical excitation is reported with a polarisation degree that can be controlled by the exciton-cavity detuning. In contrast to the very low circular polarisation degrees seen in MoSe$_2$ exciton and trion resonances, we observe a significant enhancement of up to 7 times when in the polaritonic regime. Here, polaritons introduce a fast decay mechanism which inhibits full valley pseudospin relaxation and thus allows for increased retention of injected polarisation in the emitted light. A dynamical model applicable to cavity-polaritons in any TMD semiconductor, reproduces the detuning dependence through the incorporation of the cavity-modified exciton relaxation, allowing an estimate of the spin relaxation time in MoSe$_2$ which is an order of magnitude faster than those reported in other TMDs. The valley addressable exciton-polaritons reported here offer robust valley polarised states demonstrating the prospect of valleytronic devices based upon TMDs embedded in photonic structures, with significant potential for valley-dependent nonlinear polariton-polariton interactions.
Stacking order can significantly influence the physical properties of two-dimensional (2D) van der Waals materials. The recent isolation of atomically thin magnetic materials opens the door for control and design of magnetism via stacking order. Here we apply hydrostatic pressure up to 2 GPa to modify the stacking order in a prototype van der Waals magnetic insulator CrI3. We observe an irreversible interlayer antiferromagnetic (AF) to ferromagnetic (FM) transition in atomically thin CrI3 by magnetic circular dichroism and electron tunneling measurements. The effect is accompanied by a monoclinic to a rhombohedral stacking order change characterized by polarized Raman spectroscopy. Before the structural change, the interlayer AF coupling energy can be tuned up by nearly 100% by pressure. Our experiment reveals interlayer FM coupling, which is the established ground state in bulk CrI3, but never observed in native exfoliated thin films. The observed correlation between the magnetic ground state and the stacking order is in good agreement with first principles calculations and suggests a route towards nanoscale magnetic textures by moire engineering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا