ترغب بنشر مسار تعليمي؟ اضغط هنا

Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit

69   0   0.0 ( 0 )
 نشر من قبل Jakob Wierzbowski
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the reduction of the inhomogeneous linewidth of the free excitons in atomically thin transition metal dichalcogenides (TMDCs) MoSe$_{2}$, WSe$_{2}$ and MoS$_{2}$ by encapsulation within few nanometer thick hBN. Encapsulation is shown to result in a significant reduction of the 10K excitonic linewidths down to $sim3.5 text{ meV}$ for n-MoSe$_{2}$, $sim5.0 text{ meV}$ for p-WSe$_{2}$ and $sim4.8 text{ meV}$ for n-MoS$_{2}$. Evidence is obtained that the hBN environment effectively lowers the Fermi level since the relative spectral weight shifts towards the neutral exciton emission in n-doped TMDCs and towards charged exciton emission in p-doped TMDCs. Moreover, we find that fully encapsulated MoS$_{2}$ shows resolvable exciton and trion emission even after high power density excitation in contrast to non-encapsulated materials. Our findings suggest that encapsulation of mechanically exfoliated few-monolayer TMDCs within nanometer thick hBN dramatically enhances optical quality, producing ultra-narrow linewidths that approach the homogeneous limit.

قيم البحث

اقرأ أيضاً

82 - C. Robert , D. Lagarde , F. Cadiz 2016
We have investigated the exciton dynamics in transition metal dichalcogenide mono-layers using time-resolved photoluminescence experiments performed with optimized time-resolution. For MoSe2 monolayers, we measure $tau_{rad}=1.8pm0.2$ ps that we inte rpret as the intrinsic radiative recombination time. Similar values are found for WSe2 mono-layers. Our detailed analysis suggests the following scenario: at low temperature (T $leq$ 50 K), the exciton oscillator strength is so large that the entire light can be emitted before the time required for the establishment of a thermalized exciton distribution. For higher lattice temperatures, the photoluminescence dynamics is characterized by two regimes with very different characteristic times. First the PL intensity drops drastically with a decay time in the range of the picosecond driven by the escape of excitons from the radiative window due to exciton- phonon interactions. Following this first non-thermal regime, a thermalized exciton population is established gradually yielding longer photoluminescence decay times in the nanosecond range. Both the exciton effective radiative recombination and non-radiative recombination channels including exciton-exciton annihilation control the latter. Finally the temperature dependence of the measured exciton and trion dynamics indicates that the two populations are not in thermodynamical equilibrium.
We study theoretically the Coulomb interaction between excitons in transition metal dichalcogenide (TMD) monolayers. We calculate direct and exchange interaction for both ground and excited states of excitons. The screening of the Coulomb interaction , specific to monolayer structures, leads to the unique behavior of the exciton-exciton scattering for excited states, characterized by the non-monotonic dependence of the interaction as function of the transferred momentum. We find that the nontrivial screening enables the description of TMD exciton interaction strength by approximate formula which includes exciton binding parameters. The influence of screening and dielectric environment on the exciton-exciton interaction was studied, showing qualitatively different behavior for ground state and excited states of excitons. Furthermore, we consider exciton-electron interaction, which for the excited states is governed by the dominant attractive contribution of the exchange component, which increases with the excitation number. The results provide a quantitative description of the exciton-exciton and exciton-electron scattering in transition metal dichalcogenides, and are of interest for the design of perspective nonlinear optical devices based on TMD monolayers.
Excitons in semiconductors, bound pairs of excited electrons and holes, can form the basis for new classes of quantum optoelectronic devices. A van der Waals heterostructure built from atomically thin semiconducting transition metal dichalcogenides ( TMDs) enables the formation of excitons from electrons and holes in distinct layers, producing interlayer excitons with large binding energy and a long lifetime. Employing heterostructures of monolayer TMDs, we realize optical and electrical generation of long-lived neutral and charged interlayer excitons. We demonstrate the transport of neutral interlayer excitons across the whole sample that can be controlled by excitation power and gate electrodes. We also realize the drift motion of charged interlayer excitons using Ohmic-contacted devices. The electrical generation and control of excitons provides a new route for realizing quantum manipulation of bosonic composite particles with complete electrical tunability.
Due to a strong Coulomb interaction, excitons dominate the excitation kinetics in 2D materials. While Coulomb-scattering between electrons has been well studied, the interaction of excitons is more challenging and remains to be explored. As neutral c omposite bosons consisting of electrons and holes, excitons show a non-trivial scattering dynamics. Here, we study on microscopic footing exciton-exciton interaction in transition-metal dichalcogenides and related van der Waals heterostructures. We demonstrate that the crucial criterion for efficient scattering is a large electron/hole mass asymmetry giving rise to internal charge inhomogeneities of excitons and emphasizing their cobosonic substructure. Furthermore, both exchange and direct exciton-exciton interactions are boosted by enhanced exciton Bohr radii. We also predict an unexpected temperature dependence that is usually associated to phonon-driven scattering and we reveal an orders of magnitude stronger interaction of interlayer excitons due to their permanent dipole moment. The developed approach can be generalized to arbitrary material systems and will help to study strongly correlated exciton systems, such as moire super lattices.
Atomically thin transition metal dichalcogenides (TMDs) have distinct opto-electronic properties including enhanced luminescence and high on-off current ratios, which can be further modulated by making more complex TMD heterostructures. However, reso lution limits of conventional optical methods do not allow for direct optical-structural correlation measurements in these materials, particularly of buried interfaces in TMD heterostructures. Here we use, for the first time, electron beam induced cathodoluminescence in a scanning transmission electron microscope (CL-STEM) to measure optical properties of monolayer TMDs (WS2, MoS2 and WSSe alloy) encapsulated between layers of hBN. We observe dark areas resulting from localized (~ 100 nm) imperfect interfaces and monolayer folding, which shows that the intimate contact between layers in this application-relevant heterostructure is required for proper inter layer coupling. We also realize a suitable imaging method that minimizes electron-beam induced changes and provides measurement of intrinsic properties. To overcome the limitation of small electron interaction volume in TMD monolayer (and hence low photon yield), we find that encapsulation of TMD monolayers with hBN and subsequent annealing is important. CL-STEM offers to be a powerful method to directly measure structure-optical correspondence in lateral or vertical heterostructures and alloys.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا