ﻻ يوجد ملخص باللغة العربية
Optomechanical arrays are a promising future platform for studies of transport, many-body dynamics, quantum control and topological effects in systems of coupled photon and phonon modes. We introduce disordered optomechanical arrays, focusing on features of Anderson localization of hybrid photon-phonon excitations. It turns out that these represent a unique disordered system, where basic parameters can be easily controlled by varying the frequency and the amplitude of an external laser field. We show that the two-species setting leads to a non-trivial frequency dependence of the localization length for intermediate laser intensities. This could serve as a convincing evidence of localization in a non-equilibrium dissipative situation.
We show that, in contrast to immediate intuition, Anderson localization of noninteracting particles induced by a disordered potential in free space can increase (i.e., the localization length can decrease) when the particle energy increases, for appr
Wave localization is ubiquitous in disordered media -- from amorphous materials, where soft-mode localization is closely related to materials failure, to semi-conductors, where Anderson localization leads to metal-insulator transition. Our main under
We consider the dynamics of an electron in an infinite disordered metallic wire. We derive exact expressions for the probability of diffusive return to the starting point in a given time. The result is valid for wires with or without time-reversal sy
Topology and disorder have deep connections and a rich combined influence on quantum transport. In order to probe these connections, we synthesized one-dimensional chiral symmetric wires with controllable disorder via spectroscopic Hamiltonian engine
We present a numerical study of electromagnetic wave transport in disordered quasi-one-dimensional waveguides at terahertz frequencies. Finite element method calculations of terahertz wave propagation within LiNbO$_{3}$ waveguides with randomly arran