ﻻ يوجد ملخص باللغة العربية
The valence state of UTe$_2$ was studied by core-level photoelectron spectroscopy. The main peak position of the U $4f$ core-level spectrum of UTe$_2$ coincides with that of UB$_2$, which is an itinerant compound with a nearly $5f^3$ configuration. However, the main peak of UTe$_2$ is broader than that of UB$_2$, and satellite structures are observed in the higher binding energy side of the main peak, which are characteristics of mixed-valence uranium compounds. These results suggest that the U 5$f$ state in UTe$_2$ is in a mixed valence state with a dominant contribution from the itinerant $5f^3$ configuration.
The electronic structure of the unconventional superconductor UTe$_2$ was studied by resonant photoelectron spectroscopy (RPES) and angle-resolved photoelectron spectroscopy (ARPES) with soft X-ray synchrotron radiation. The partial $mathrm{U}~5f$ de
High-energy-resolution core-level and valence-band photoelectron spectroscopic studies were performed for the heavy Fermion uranium compounds UGe2, UCoGe, URhGe, URu2Si2, UNi2Al3, UPd2Al3, and UPt3 as well as typical localized and itinerant uranium c
The core-level electronic structures of the exfoliated graphene sheets on a Au-coated SiOx substrate have been studied by synchrotron radiation photoelectron spectroscopy (SR-PES) on a micron-scale. The graphene was firstly demonstrated its visibilit
The three-dimensional (3D) electronic structure of the hidden order compound URu$_2$Si$_2$ in a paramagnetic phase was revealed using a 3D angle-resolved photoelectron spectroscopy where the electronic structure of the entire Brillouin zone is obtain
We have investigated the electronic structure of iridates in the double perovskite crystal structure containing either Ir$^{4+}$ or Ir$^{5+}$ using hard x-ray photoelectron spectroscopy. The experimental valence band spectra can be well reproduced us