ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic Structure of UTe$_2$ Studied by Photoelectron Spectroscopy

93   0   0.0 ( 0 )
 نشر من قبل Shin-ichi Fujimori
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The electronic structure of the unconventional superconductor UTe$_2$ was studied by resonant photoelectron spectroscopy (RPES) and angle-resolved photoelectron spectroscopy (ARPES) with soft X-ray synchrotron radiation. The partial $mathrm{U}~5f$ density of states of UTe$_2$ were imaged by the $mathrm{U}~4d$--$5f$ RPES and it was found that the $mathrm{U}~5f$ state has an itinerant character, but there exists an incoherent peak due to the strong electron correlation effects. Furthermore, an anomalous admixture of the $mathrm{U}~5f$ states into the $mathrm{Te}~5p$ bands was observed at a higher binding energy, which cannot be explained by band structure calculations. On the other hand, the band structure of UTe$_2$ was obtained by ARPES and its overall band structure were mostly explained by band structure calculations. These results suggest that the $mathrm{U}~5f$ states of UTe$_2$ have itinerant but strongly-correlated nature with enhanced hybridization with the $mathrm{Te}~5p$ states.

قيم البحث

اقرأ أيضاً

The valence state of UTe$_2$ was studied by core-level photoelectron spectroscopy. The main peak position of the U $4f$ core-level spectrum of UTe$_2$ coincides with that of UB$_2$, which is an itinerant compound with a nearly $5f^3$ configuration. H owever, the main peak of UTe$_2$ is broader than that of UB$_2$, and satellite structures are observed in the higher binding energy side of the main peak, which are characteristics of mixed-valence uranium compounds. These results suggest that the U 5$f$ state in UTe$_2$ is in a mixed valence state with a dominant contribution from the itinerant $5f^3$ configuration.
High-energy-resolution core-level and valence-band photoelectron spectroscopic studies were performed for the heavy Fermion uranium compounds UGe2, UCoGe, URhGe, URu2Si2, UNi2Al3, UPd2Al3, and UPt3 as well as typical localized and itinerant uranium c ompounds to understand the relationship between the uranium valence state and their core-level spectral line shapes. In addition to the main line and high-binding energy satellite structure recognized in the core-level spectra of uranium compounds, a shoulder structure on the lower binding energy side of the main lines of localized and nearly localized uranium compounds was also found. The spectral line shapes show a systematic variation depending on the U 5f electronic structure. The core-level spectra of UGe2, UCoGe, URhGe, URu2Si2, and UNi2Al3 are rather similar to those of itinerant compounds, suggesting that U 5f electrons in these compounds are well hybridized with ligand states. On the other hand, the core-level spectra of UPd2Al3 and UPt3 show considerably different spectral line shapes from those of the itinerant compounds, suggesting that U 5f electrons in UPd2Al3 and UPt3 are less hybridized with ligand states, leading to the correlated nature of U 5f electrons in these compounds. The dominant final state characters in their core-level spectra suggest that the numbers of 5f electrons in UGe2, UCoGe, URhGe, URu2Si2, UNi2Al3, and UPd2Al3 are close to but less than three, while that of UPt3 is close to two rather than to three.
The electronic structures of the ferromagnetic superconductors $mathrm{UGe}_2$ and $mathrm{UCoGe}$ in the paramagnetic phase were studied by angle-resolved photoelectron spectroscopy using soft X-rays ($h u =400-500$). The quasi-particle bands with l arge contributions from $mathrm{U}~5f$ states were observed in the vicinity of $E_mathrm{F}$, suggesting that the $mathrm{U}~5f$ electrons of these compounds have an itinerant character. Their overall band structures were explained by the band-structure calculations treating all the $mathrm{U}~5f$ electrons as being itinerant. Meanwhile, the states in the vicinity of $E_mathrm{F}$ show considerable deviations from the results of band-structure calculations, suggesting that the shapes of Fermi surface of these compounds are qualitatively different from the calculations, possibly caused by electron correlation effect in the complicated band structures of the low-symmetry crystals. Strong hybridization between $mathrm{U}~5f$ and $mathrm{Co}~3d$ states in $mathrm{UCoGe}$ were found by the $mathrm{Co}~2p-3d$ resonant photoemission experiment, suggesting that $mathrm{Co}~3d$ states have finite contributions to the magnetic, transport, and superconducting properties.
The electronic structures of UX$_3$ (X=Al, Ga, and In) were studied by photoelectron spectroscopy to understand the relationship between their electronic structures and magnetic properties. The band structures and Fermi surfaces of UAl$_3$ and UGa$_3 $ were revealed experimentally by angle-resolved photoelectron spectroscopy (ARPES), and they were compared with the result of band-structure calculations. The topologies of the Fermi surfaces and the band structures of UAl$_3$ and UGa$_3$ were explained reasonably well by the calculation, although bands near the Fermi level ($E_mathrm{F}$) were renormalized owing to the finite electron correlation effect. The topologies of the Fermi surfaces of UAl$_3$ and UGa$_3$ are very similar to each other, except for some minor differences. Such minor differences in their Fermi surface or electron correlation effect might take an essential role in their different magnetic properties. No significant changes were observed between the ARPES spectra of UGa$_3$ in the paramagnetic and antiferromagnetic phases, suggesting that UGa$_3$ is an itinerant weak antiferromagnet. The effect of chemical pressure on the electronic structures of UX$_3$ compounds was also studied by utilizing the smaller lattice constants of UAl$_3$ and UGa$_3$ than that of UIn$_3$. The valence band spectrum of UIn$_3$ is accompanied by a satellite-like structure on the high-binding-energy side. The core-level spectrum of UIn$_3$ is also qualitatively different from those of UAl$_3$ and UGa$_3$. These findings suggest that the U~$5f$ states in UIn$_3$ are more localized than those in UAl$_3$ and UGa$_3$.
The electronic structure of ThRu2Si2 was studied by angle-resolved photoelectron spectroscopy (ARPES) with incident photon energies of hn=655-745 eV. Detailed band structure and the three-dimensional shapes of Fermi surfaces were derived experimental ly, and their characteristic features were mostly explained by means of band structure calculations based on the density functional theory. Comparison of the experimental ARPES spectra of ThRu2Si2 with those of URu2Si2 shows that they have considerably different spectral profiles particularly in the energy range of 1 eV from the Fermi level, suggesting that U 5f states are substantially hybridized in these bands. The relationship between the ARPES spectra of URu2Si2 and ThRu2Si2 is very different from the one between the ARPES spectra of CeRu2Si2 and LaRu2Si2, where the intrinsic difference in their spectra is limited only in the very vicinity of the Fermi energy. The present result suggests that the U 5f electrons in URu2Si2 have strong hybridization with ligand states and have an essentially itinerant character.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا