ترغب بنشر مسار تعليمي؟ اضغط هنا

Multi-agent Policy Optimization with Approximatively Synchronous Advantage Estimation

100   0   0.0 ( 0 )
 نشر من قبل Lipeng Wan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Cooperative multi-agent tasks require agents to deduce their own contributions with shared global rewards, known as the challenge of credit assignment. General methods for policy based multi-agent reinforcement learning to solve the challenge introduce differentiate value functions or advantage functions for individual agents. In multi-agent system, polices of different agents need to be evaluated jointly. In order to update polices synchronously, such value functions or advantage functions also need synchronous evaluation. However, in current methods, value functions or advantage functions use counter-factual joint actions which are evaluated asynchronously, thus suffer from natural estimation bias. In this work, we propose the approximatively synchronous advantage estimation. We first derive the marginal advantage function, an expansion from single-agent advantage function to multi-agent system. Further more, we introduce a policy approximation for synchronous advantage estimation, and break down the multi-agent policy optimization problem into multiple sub-problems of single-agent policy optimization. Our method is compared with baseline algorithms on StarCraft multi-agent challenges, and shows the best performance on most of the tasks.



قيم البحث

اقرأ أيضاً

112 - Jiajin Li , Baoxiang Wang 2018
Policy optimization on high-dimensional continuous control tasks exhibits its difficulty caused by the large variance of the policy gradient estimators. We present the action subspace dependent gradient (ASDG) estimator which incorporates the Rao-Bla ckwell theorem (RB) and Control Variates (CV) into a unified framework to reduce the variance. To invoke RB, our proposed algorithm (POSA) learns the underlying factorization structure among the action space based on the second-order advantage information. POSA captures the quadratic information explicitly and efficiently by utilizing the wide & deep architecture. Empirical studies show that our proposed approach demonstrates the performance improvements on high-dimensional synthetic settings and OpenAI Gyms MuJoCo continuous control tasks.
This paper investigates the model-based methods in multi-agent reinforcement learning (MARL). We specify the dynamics sample complexity and the opponent sample complexity in MARL, and conduct a theoretic analysis of return discrepancy upper bound. To reduce the upper bound with the intention of low sample complexity during the whole learning process, we propose a novel decentralized model-based MARL method, named Adaptive Opponent-wise Rollout Policy Optimization (AORPO). In AORPO, each agent builds its multi-agent environment model, consisting of a dynamics model and multiple opponent models, and trains its policy with the adaptive opponent-wise rollout. We further prove the theoretic convergence of AORPO under reasonable assumptions. Empirical experiments on competitive and cooperative tasks demonstrate that AORPO can achieve improved sample efficiency with comparable asymptotic performance over the compared MARL methods.
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC), a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces. Like MADDPG, a popular multi-agent actor-critic method, our approach uses deep deterministic policy gradients to learn policies. However, FACMAC learns a centralised but factored critic, which combines per-agent utilities into the joint action-value function via a non-linear monotonic function, as in QMIX, a popular multi-agent Q-learning algorithm. However, unlike QMIX, there are no inherent constraints on factoring the critic. We thus also employ a nonmonotonic factorisation and empirically demonstrate that its increased representational capacity allows it to solve some tasks that cannot be solved with monolithic, or monotonically factored critics. In addition, FACMAC uses a centralised policy gradient estimator that optimises over the entire joint action space, rather than optimising over each agents action space separately as in MADDPG. This allows for more coordinated policy changes and fully reaps the benefits of a centralised critic. We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks. Empirical results demonstrate FACMACs superior performance over MADDPG and other baselines on all three domains.
To learn good joint policies for multi-agent collaboration with imperfect information remains a fundamental challenge. While for two-player zero-sum games, coordinate-ascent approaches (optimizing one agents policy at a time, e.g., self-play) work wi th guarantees, in multi-agent cooperative setting they often converge to sub-optimal Nash equilibrium. On the other hand, directly modeling joint policy changes in imperfect information game is nontrivial due to complicated interplay of policies (e.g., upstream updates affect downstream state reachability). In this paper, we show global changes of game values can be decomposed to policy changes localized at each information set, with a novel term named policy-change density. Based on this, we propose Joint Policy Search(JPS) that iteratively improves joint policies of collaborative agents in imperfect information games, without re-evaluating the entire game. On multi-agent collaborative tabular games, JPS is proven to never worsen performance and can improve solutions provided by unilateral approaches (e.g, CFR), outperforming algorithms designed for collaborative policy learning (e.g. BAD). Furthermore, for real-world games, JPS has an online form that naturally links with gradient updates. We test it to Contract Bridge, a 4-player imperfect-information game where a team of $2$ collaborates to compete against the other. In its bidding phase, players bid in turn to find a good contract through a limited information channel. Based on a strong baseline agent that bids competitive bridge purely through domain-agnostic self-play, JPS improves collaboration of team players and outperforms WBridge5, a championship-winning software, by $+0.63$ IMPs (International Matching Points) per board over 1k games, substantially better than previous SoTA ($+0.41$ IMPs/b) under Double-Dummy evaluation.
Reward decomposition is a critical problem in centralized training with decentralized execution~(CTDE) paradigm for multi-agent reinforcement learning. To take full advantage of global information, which exploits the states from all agents and the re lated environment for decomposing Q values into individual credits, we propose a general meta-learning-based Mixing Network with Meta Policy Gradient~(MNMPG) framework to distill the global hierarchy for delicate reward decomposition. The excitation signal for learning global hierarchy is deduced from the episode reward difference between before and after exercise updates through the utility network. Our method is generally applicable to the CTDE method using a monotonic mixing network. Experiments on the StarCraft II micromanagement benchmark demonstrate that our method just with a simple utility network is able to outperform the current state-of-the-art MARL algorithms on 4 of 5 super hard scenarios. Better performance can be further achieved when combined with a role-based utility network.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا