ﻻ يوجد ملخص باللغة العربية
Machine learning models that first learn a representation of a domain in terms of human-understandable concepts, then use it to make predictions, have been proposed to facilitate interpretation and interaction with models trained on high-dimensional data. However these methods have important limitations: the way they define concepts are not inherently interpretable, and they assume that concept labels either exist for individual instances or can easily be acquired from users. These limitations are particularly acute for high-dimensional tabular features. We propose an approach for learning a set of transparent concept definitions in high-dimensional tabular data that relies on users labeling concept features instead of individual instances. Our method produces concepts that both align with users intuitive sense of what a concept means, and facilitate prediction of the downstream label by a transparent machine learning model. This ensures that the full model is transparent and intuitive, and as predictive as possible given this constraint. We demonstrate with simulated user feedback on real prediction problems, including one in a clinical domain, that this kind of direct feedback is much more efficient at learning solutions that align with ground truth concept definitions than alternative transparent approaches that rely on labeling instances or other existing interaction mechanisms, while maintaining similar predictive performance.
Anomaly Detection is an unsupervised learning task aimed at detecting anomalous behaviours with respect to historical data. In particular, multivariate Anomaly Detection has an important role in many applications thanks to the capability of summarizi
As machine learning algorithms getting adopted in an ever-increasing number of applications, interpretation has emerged as a crucial desideratum. In this paper, we propose a mathematical definition for the human-interpretable model. In particular, we
Concept drift is a phenomenon in which the distribution of a data stream changes over time in unforeseen ways, causing prediction models built on historical data to become inaccurate. While a variety of automated methods have been developed to identi
Deep neural networks (DNNs) are powerful black-box predictors that have achieved impressive performance on a wide variety of tasks. However, their accuracy comes at the cost of intelligibility: it is usually unclear how they make their decisions. Thi
Machine learning has shown much promise in helping improve the quality of medical, legal, and economic decision-making. In these applications, machine learning models must satisfy two important criteria: (i) they must be causal, since the goal is typ