ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-Temperature 2D/2D Ohmic Contacts in WSe$_2$ Field-Effect Transistors as a Platform for the 2D Metal-Insulator Transition

110   0   0.0 ( 0 )
 نشر من قبل Dragana Popovic
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the fabrication of hexagonal-boron-nitride (hBN) encapsulated multi-terminal WSe$_2$ Hall bars with 2D/2D low-temperature Ohmic contacts as a platform for investigating the two-dimensional (2D) metal-insulator transition. We demonstrate that the WSe$_2$ devices exhibit Ohmic behavior down to 0.25 K and at low enough excitation voltages to avoid current-heating effects. Additionally, the high-quality hBN-encapsulated WSe$_2$ devices in ideal Hall-bar geometry enable us to accurately determine the carrier density. Measurements of the temperature ($T$) and density ($n_s$) dependence of the conductivity $sigma(T,n_s)$ demonstrate scaling behavior consistent with a metal-insulator quantum phase transition driven by electron-electron interactions, but where disorder-induced local magnetic moments are also present. Our findings pave the way for further studies of the fundamental quantum mechanical properties of 2D transition metal dichalcogenides using the same contact engineering.



قيم البحث

اقرأ أيضاً

We report a new strategy for fabricating 2D/2D low-resistance ohmic contacts for a variety of transition metal dichalcogenides (TMDs) using van der Waals assembly of substitutionally doped TMDs as drain/source contacts and TMDs with no intentional do ping as channel materials. We demonstrate that few-layer WSe2 field-effect transistors (FETs) with 2D/2D contacts exhibit low contact resistances of ~ 0.3 k ohm.um, high on/off ratios up to > 109, and high drive currents exceeding 320 uA um-1. These favorable characteristics are combined with a two-terminal field-effect hole mobility ~ 2x102 cm2 V-1 s-1 at room temperature, which increases to >2x103 cm2 V-1 s-1 at cryogenic temperatures. We observe a similar performance also in MoS2 and MoSe2 FETs with 2D/2D drain and source contacts. The 2D/2D low-resistance ohmic contacts presented here represent a new device paradigm that overcomes a significant bottleneck in the performance of TMDs and a wide variety of other 2D materials as the channel materials in post-silicon electronics.
The superconductor-insulator transition of ultrathin films of bismuth, grown on liquid helium cooled substrates, has been studied. The transition was tuned by changing both film thickness and perpendicular magnetic field. Assuming that the transition is controlled by a T=0 critical point, a finite size scaling analysis was carried out to determine the correlation length exponent v and the dynamical critical exponent z. The phase diagram and the critical resistance have been studied as a function of film thickness and magnetic field. The results are discussed in terms of bosonic models of the superconductor-insulator transition, as well as the percolation models which predict finite dissipation at T=0.
Reports of metallic behavior in two-dimensional (2D) systems such as high mobility metal-oxide field effect transistors, insulating oxide interfaces, graphene, and MoS2 have challenged the well-known prediction of Abrahams, et al. that all 2D systems must be insulating. The existence of a metallic state for such a wide range of 2D systems thus reveals a wide gap in our understanding of 2D transport that has become more important as research in 2D systems expands. A key to understanding the 2D metallic state is the metal-insulator transition (MIT). In this report, we demonstrate the existence of a disorder induced MIT in functionalized graphene, a model 2D system. Magneto-transport measurements show that weak-localization overwhelmingly drives the transition, in contradiction to theoretical assumptions that enhanced electron-electron interactions dominate. These results provide the first detailed picture of the nature of the transition from the metallic to insulating states of a 2D system.
Electron-electron interactions (EEIs) in 2D van der Waals structures is one of the topics with high current interest in physics. We report the observation of a negative parabolic magnetoresistance (MR) in multilayer 2D semiconductor InSe beyond the l ow-field weak localization/antilocalization regime, and provide evidence for the EEI origin of this MR behavior. Further, we analyze this negative parabolic MR and other observed quantum transport signatures of EEIs (temperature dependent conductance and Hall coefficient) within the framework of Fermi liquid theory and extract the gate voltage tunable Fermi liquid parameter $F_0^sigma$ which quantifies the electron spin-exchange interaction strength.
We develop a minimal theory for the recently observed metal-insulator transition (MIT) in two-dimensional (2D) moire multilayer transition metal dichalcogenides (mTMD) using Coulomb disorder in the environment as the underlying mechanism. In particul ar, carrier scattering by random charged impurities leads to an effective 2D MIT approximately controlled by the Ioffe-Regel criterion, which is qualitatively consistent with the experiments. We find the necessary disorder to be around $5$-$10times10^{10}$cm$^{-2}$ random charged impurities in order to quantitatively explain much, but not all, of the observed MIT phenomenology as reported by two different experimental groups. Our estimate is consistent with the known disorder content in TMDs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا