ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for long-lived particles decaying to $e^pm mu^mp u$

108   0   0.0 ( 0 )
 نشر من قبل Matthieu Marinangeli
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Long-lived particles decaying to $e^pm mu^mp u$, with masses between 7 and $50$ GeV/c$^2$ and lifetimes between 2 and $50$ ps, are searched for by looking at displaced vertices containing electrons and muons of opposite charges. The search is performed using $5.4$ fb$^{-1}$ of $pp$ collisions collected with the LHCb detector at a centre-of-mass energy of $sqrt{s} = 13$ TeV. Three mechanisms of production of long-lived particles are considered: the direct pair production from quark interactions, the pair production from the decay of a Standard-Model-like Higgs boson with a mass of $125$ GeV/c$^2$, and the charged current production from an on-shell $W$ boson with an additional lepton. No evidence of these long-lived states is obtained and upper limits on the production cross-section times branching fraction are set on the different production modes.



قيم البحث

اقرأ أيضاً

A search is presented for long-lived particles with a mass between 25 and 50 GeV$/c^2$ and a lifetime between 1 and 200 ps in a sample of proton-proton collisions at a centre-of-mass energy of $sqrt{s}=7$ TeV, corresponding to an integrated luminosit y of 0.62 fb$^{-1}$, collected by the LHCb detector. The particles are assumed to be pair-produced by the decay of a Standard Model-like Higgs boson. The experimental signature of the long-lived particle is a displaced vertex with two associated jets. No excess above the background is observed and limits are set on the production cross-section as a function of the long-lived particle mass and lifetime.
154 - Thomas Bird 2013
An overview is presented of a method to search for $D^0to{}e^{pm}mu^{mp}$ with LHCb data. In order to reduce combinatorial backgrounds, tagged $D^0$ candidates from the decay $D^{ast+}to{}D^0pi^+$ are used. This measurement is performed with respect to $mathcal{B}left(D^0to{}pi^+pi^-right)$, which cancels uncertainties in the luminosity and $D^{ast+}$ production cross-section. It is estimated that using $3,mathrm{fb}^{-1}$ of LHCb data an upper limit can be attained of $mathcal{O}left(10^{-7}right)$ at a $90%$ confidence level.
A search is presented for long-lived particles with a mass between 25 and 50 GeV/$c^2$ and a lifetime between 2 and 500 ps, using proton-proton collision data corresponding to an integrated luminosity of 2.0 fb$^{-1}$, collected by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. The particles are assumed to be pair-produced in the decay of a 125 GeV/$c^2$ Standard-Model-like Higgs boson. The experimental signature is a single long-lived particle, identified by a displaced vertex with two associated jets. No excess above background is observed and limits are set on the production cross-section as a function of the mass and lifetime of the long-lived particle.
Theories beyond the standard model often predict the existence of an additional neutral boson, the $Z^{prime}$. Using data collected by the Belle II experiment during 2018 at the SuperKEKB collider, we perform the first searches for the invisible dec ay of a $Z^{prime}$ in the process $e^+ e^- to mu^+ mu^- Z^{prime}$ and of a lepton-flavor-violating $Z^{prime}$ in $e^+ e^- to e^{pm} mu^{mp} Z^{prime}$. We do not find any excess of events and set 90% credibility level upper limits on the cross sections of these processes. We translate the former, in the framework of an $L_{mu}-L_{tau}$ theory, into upper limits on the $Z^{prime}$ coupling constant at the level of $5 times 10^{-2}$ -- $1$ $M_{Z^prime}leq 6$ GeV/$c^2$.
A search for the lepton-flavour violating decays $B^0_s to e^{pm} mu^{mp}$ and $B^0 to e^{pm} mu^{mp}$ is performed with a data sample, corresponding to an integrated luminosity of 1.0 fb$^{-1}$ of $pp$ collisions at $sqrt{s} = 7$ TeV, collected by t he LHCb experiment. The observed number of $B^0_s to e^{pm} mu^{mp}$ and $B^0 to e^{pm} mu^{mp}$ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be $BR(B^0_s to e^{pm} mu^{mp}) < 1.1 ,(1.4) times 10^{-8}$ and $BR (B^0 to e^{pm} mu^{mp}) < 2.8 ,(3.7) times 10^{-9}$ at 90% (95%) confidence level (C.L.). These limits are a factor of twenty lower than those set by previous experiments. Lower bounds on the Pati-Salam leptoquark masses are also calculated, $M_{rm LQ} (B^0_s to e^{pm} mu^{mp}) > 107$ TeV/c$^2$ and $M_{rm LQ} (B^0 to e^{pm} mu^{mp}) > 126$ TeV/c$^2$ at 95% C.L., and are a factor of two higher than the previous bounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا