ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for an invisibly decaying $Z^{prime}$ boson at Belle II in $e^+ e^- to mu^+ mu^- (e^{pm} mu^{mp})$ plus missing energy final states

74   0   0.0 ( 0 )
 نشر من قبل Giacomo De Pietro
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Theories beyond the standard model often predict the existence of an additional neutral boson, the $Z^{prime}$. Using data collected by the Belle II experiment during 2018 at the SuperKEKB collider, we perform the first searches for the invisible decay of a $Z^{prime}$ in the process $e^+ e^- to mu^+ mu^- Z^{prime}$ and of a lepton-flavor-violating $Z^{prime}$ in $e^+ e^- to e^{pm} mu^{mp} Z^{prime}$. We do not find any excess of events and set 90% credibility level upper limits on the cross sections of these processes. We translate the former, in the framework of an $L_{mu}-L_{tau}$ theory, into upper limits on the $Z^{prime}$ coupling constant at the level of $5 times 10^{-2}$ -- $1$ $M_{Z^prime}leq 6$ GeV/$c^2$.



قيم البحث

اقرأ أيضاً

Long-lived particles decaying to $e^pm mu^mp u$, with masses between 7 and $50$ GeV/c$^2$ and lifetimes between 2 and $50$ ps, are searched for by looking at displaced vertices containing electrons and muons of opposite charges. The search is perfor med using $5.4$ fb$^{-1}$ of $pp$ collisions collected with the LHCb detector at a centre-of-mass energy of $sqrt{s} = 13$ TeV. Three mechanisms of production of long-lived particles are considered: the direct pair production from quark interactions, the pair production from the decay of a Standard-Model-like Higgs boson with a mass of $125$ GeV/c$^2$, and the charged current production from an on-shell $W$ boson with an additional lepton. No evidence of these long-lived states is obtained and upper limits on the production cross-section times branching fraction are set on the different production modes.
158 - Thomas Bird 2013
An overview is presented of a method to search for $D^0to{}e^{pm}mu^{mp}$ with LHCb data. In order to reduce combinatorial backgrounds, tagged $D^0$ candidates from the decay $D^{ast+}to{}D^0pi^+$ are used. This measurement is performed with respect to $mathcal{B}left(D^0to{}pi^+pi^-right)$, which cancels uncertainties in the luminosity and $D^{ast+}$ production cross-section. It is estimated that using $3,mathrm{fb}^{-1}$ of LHCb data an upper limit can be attained of $mathcal{O}left(10^{-7}right)$ at a $90%$ confidence level.
A search for the lepton-flavour violating decays $B^0_s to e^{pm} mu^{mp}$ and $B^0 to e^{pm} mu^{mp}$ is performed with a data sample, corresponding to an integrated luminosity of 1.0 fb$^{-1}$ of $pp$ collisions at $sqrt{s} = 7$ TeV, collected by t he LHCb experiment. The observed number of $B^0_s to e^{pm} mu^{mp}$ and $B^0 to e^{pm} mu^{mp}$ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be $BR(B^0_s to e^{pm} mu^{mp}) < 1.1 ,(1.4) times 10^{-8}$ and $BR (B^0 to e^{pm} mu^{mp}) < 2.8 ,(3.7) times 10^{-9}$ at 90% (95%) confidence level (C.L.). These limits are a factor of twenty lower than those set by previous experiments. Lower bounds on the Pati-Salam leptoquark masses are also calculated, $M_{rm LQ} (B^0_s to e^{pm} mu^{mp}) > 107$ TeV/c$^2$ and $M_{rm LQ} (B^0 to e^{pm} mu^{mp}) > 126$ TeV/c$^2$ at 95% C.L., and are a factor of two higher than the previous bounds.
We present a search for the dark photon $A^{prime}$ in the $B^0 to A^{prime} A^{prime}$ decays, where $A^{prime}$ subsequently decays to $e^+ e^-$, $mu^+ mu^-$, and $pi^+ pi^-$. The search is performed by analyzing $772 times 10^6$ $Boverline{B}$ eve nts collected by the Belle detector at the KEKB $e^+ e^-$ energy-asymmetric collider at the $Upsilon (4S)$ resonance. No signal is found in the dark photon mass range $0.01~mathrm{GeV}/c^2 le m_{A^{prime}} le 2.62~mathrm{GeV}/c^2$, and we set upper limits of the branching fraction of $B^0 to A^{prime} A^{prime}$ at the 90% confidence level. The products of branching fractions, $mathcal{B}(B^0 to A^{prime} A^{prime}) times mathcal{B}(A^{prime} to e^+ e^-)^2$ and $mathcal{B}(B^0 to A^{prime} A^{prime}) times mathcal{B}(A^{prime} to mu^+ mu^-)^2$, have limits of the order of $10^{-8}$ depending on the $A^{prime}$ mass. Furthermore, considering $A^{prime}$ decay rate to each pair of charged particles, the upper limits of $mathcal{B}(B^0 to A^{prime} A^{prime})$ are of the order of $10^{-8}$-$10^{-5}$. From the upper limits of $mathcal{B}(B^0 to A^{prime} A^{prime})$, we obtain the Higgs portal coupling for each assumed dark photon and dark Higgs mass. The Higgs portal couplings are of the order of $10^{-2}$-$10^{-1}$ at $m_{h} simeq m_{B^0} pm 40~mathrm{MeV}/c^2$ and $10^{-1}$-$1$ at $m_{h} simeq m_{B^0} pm 3~mathrm{GeV}/c^2$.
We searched for evidence of a Higgsstrahlung process in a secluded sector, leading to a final state with a dark photon U and a dark Higgs boson h, with the KLOE detector at DAFNE. We investigated the case of h lighter than U, with U decaying into a m uon pair and h producing a missing energy signature. We found no evidence of the process and set upper limits to its parameters in the range 2m_mu<m_U<1000 MeV, m_h<m_U.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا