ترغب بنشر مسار تعليمي؟ اضغط هنا

Low-energy electromagnetic processes affecting free-falling test-mass charging for LISA and future space interferometers

136   0   0.0 ( 0 )
 نشر من قبل Mattia Villani Dr
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Galactic cosmic rays and solar energetic particles charge gold-platinum, free-falling test masses (TMs) on board interferometers for the detection of gravitational waves in space. The charging process induces spurious forces on the test masses that affect the sensitivity of these instruments mainly below $10^{-3}$ Hz. Geant4 and FLUKA Monte Carlo simulations were carried out to study the TM charging process on board the LISA Pathfinder mission that remained into orbit around the Sun-Earth Lagrange point L1 between 2016 and 2017. While a good agreement was observed between simulations and measurements of the TMs net charging, the shot noise associated with charging fluctuations of both positive and negative particles resulted 3-4 times higher that predicted. The origin of this mismatch was attributed to the propagation of electrons and photons only above 100 eV in the simulations. In this paper, low-energy electromagnetic processes to be included in the future Monte Carlo simulations for LISA and LISA-like space interferometers TM charging are considered. {It is found that electrons and photons below 100 eV give a contribution to the effective charging comparable to that of the whole sample of particles above this energy. In particular, for incident protons ionization contributes twice with respect to low energy kinetic emission and electron backscattering. The other processes are found to play a negligible role. For heavy nuclei only sputtering must be considered.



قيم البحث

اقرأ أيضاً

134 - M. Armano , H. Audley , J. Baird 2018
The LISA Pathfinder charge management device was responsible for neutralising the cosmic ray induced electric charge that inevitably accumulated on the free-falling test masses at the heart of the experiment. We present measurements made on ground an d in-flight that quantify the performance of this contactless discharge system which was based on photo-emission under UV illumination. In addition, a two-part simulation is described that was developed alongside the hardware. Modelling of the absorbed UV light within the Pathfinder sensor was carried out with the GEANT4 software toolkit and a separate MATLAB charge transfer model calculated the net photocurrent between the test masses and surrounding housing in the presence of AC and DC electric fields. We confront the results of these models with observations and draw conclusions for the design of discharge systems for future experiments like LISA that will also employ free-falling test masses.
312 - M. Armano , H. Audley , G. Auger 2017
We report on electrostatic measurements made on board the European Space Agency mission LISA Pathfinder. Detailed measurements of the charge-induced electrostatic forces exerted on free-falling test masses (TMs) inside the capacitive gravitational re ference sensor are the first made in a relevant environment for a space-based gravitational wave detector. Employing a combination of charge control and electric-field compensation, we show that the level of charge-induced acceleration noise on a single TM can be maintained at a level close to 1.0 fm/s^2/sqrt(Hz) across the 0.1-100 mHz frequency band that is crucial to an observatory such as LISA. Using dedicated measurements that detect these effects in the differential acceleration between the two test masses, we resolve the stochastic nature of the TM charge build up due to interplanetary cosmic rays and the TM charge-to-force coupling through stray electric fields in the sensor. All our measurements are in good agreement with predictions based on a relatively simple electrostatic model of the LISA Pathfinder instrument.
We present an experimental analysis of force noise caused by stray electrostatic fields acting on a charged test mass inside a conducting enclosure, a key problem for precise gravitational experiments. Measurement of the average field that couples to test mass charge, and its fluctuations, is performed with two independent torsion pendulum techniques, including direct measurement of the forces caused by a change in electrostatic charge. We analyze the problem with an improved electrostatic model that, coupled with the experimental data, also indicates how to correctly measure and null the stray field that interacts with test mass charge. Our measurements allow a conservative upper limit on acceleration noise, of 2 fm/s$^2$rthz for frequencies above 0.1 mHz, for the interaction between stray fields and charge in the LISA gravitational wave mission.
Atom interferometry represents a quantum leap in the technology for the ultra-precise monitoring of accelerations and rotations and, therefore, for all the science that relies on the latter quantities. These sensors evolved from a new kind of optics based on matter-waves rather than light-waves and might result in an advancement of the fundamental detection limits by several orders of magnitude. Matter-wave optics is still a young, but rapidly progressing science. The Space Atom Interferometer project (SAI), funded by the European Space Agency, in a multi-pronged approach aims to investigate both experimentally and theoretically the various aspects of placing atom interferometers in space: the equipment needs, the realistically expected performance limits and potential scientific applications in a micro-gravity environment considering all aspects of quantum, relativistic and metrological sciences. A drop-tower compatible prototype of a single-axis atom interferometry accelerometer is under construction. At the same time the team is studying new schemes, e.g. based on degenerate quantum gases as source for the interferometer. A drop-tower compatible atom interferometry acceleration sensor prototype has been designed, and the manufacturing of its subsystems has been started. A compact modular laser system for cooling and trapping rubidium atoms has been assembled. A compact Raman laser module, featuring outstandingly low phase noise, has been realized. Possible schemes to implement coherent atomic sources in the atom interferometer have been experimentally demonstrated.
Context. The electrostatic potential of a spacecraft, VS, is important for the capabilities of in situ plasma measurements. Rosetta has been found to be negatively charged during most of the comet mission and even more so in denser plasmas. Aims. Our goal is to investigate how the negative VS correlates with electron density and temperature and to understand the physics of the observed correlation. Methods. We applied full mission comparative statistics of VS, electron temperature, and electron density to establish VS dependence on cold and warm plasma density and electron temperature. We also used Spacecraft-Plasma Interaction System (SPIS) simulations and an analytical vacuum model to investigate if positively biased elements covering a fraction of the solar array surface can explain the observed correlations. Results. Here, the VS was found to depend more on electron density, particularly with regard to the cold part of the electrons, and less on electron temperature than was expected for the high flux of thermal (cometary) ionospheric electrons. This behaviour was reproduced by an analytical model which is consistent with numerical simulations. Conclusions. Rosetta is negatively driven mainly by positively biased elements on the borders of the front side of the solar panels as these can efficiently collect cold plasma electrons. Biased elements distributed elsewhere on the front side of the panels are less efficient at collecting electrons apart from locally produced electrons (photoelectrons). To avoid significant charging, future spacecraft may minimise the area of exposed bias conductors or use a positive ground power system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا