ﻻ يوجد ملخص باللغة العربية
In this paper, we systematically investigated the structural and magnetic properties of CrTe by combining particle swarm optimization algorithm and first-principles calculations. With the electronic correlation effect considered, we predicted the ground-state structure of CrTe to be NiAs-type (space group P63/mmc) structure at ambient pressure, consistent with the experimental observation. Moreover, we found two extra meta-stable Cmca and R3m structure which have negative formation enthalpy and stable phonon dispersion at ambient pressure. The Cmca structure is a layered antiferromagnetic metal. The cleaved energy of a single layer is 0.464 J/m2, indicating the possible synthesis of CrTe monolayer. R3m structure is a ferromagnetic half-metal. When the pressure was applied, the ground-state structure of CrTe transitioned from P63/mmc to R3m, then to Fm3m structure at a pressure about 34 and 42 GPa, respectively. We thought these results help to motivate experimental studies the CrTe compounds in the application of spintronics.
A first-principles based methodology for efficiently and accurately finding thermodynamically stable and metastable atomic structures is introduced and benchmarked. The approach is demonstrated for gas-phase metal-oxide clusters in thermodynamic equi
The epitaxial system Sm/Co(0001) was studied for Sm coverages up to 1 monolayer (ML) on top of ultrathin Co/W(110) epitaxial films. Two ordered phases were found for 1/3 and 1 ML Sm, respectively. The valence state of Sm was determined by means of ph
Intrinsic antiferromagnetism in van der Waals (vdW) monolayer (ML) crystals enriches the understanding regarding two-dimensional (2D) magnetic orders and holds special virtues over ferromagnetism in spintronic applications. However, the studies on in
We study deformations of N=1 supersymmetric QCD that exhibit a rich landscape of supersymmetric and non-supersymmetric vacua.
Phase selection in deeply undercooled liquids and devitrified glasses during heating involves complex interplay between the barriers to nucleation and the ability for these nuclei to grow. During the devitrification of glassy alloys, complicated meta