ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconventional phase selection in high-driven systems: A complex metastable structure prevails over simple stable phases

95   0   0.0 ( 0 )
 نشر من قبل Zhuo Ye
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phase selection in deeply undercooled liquids and devitrified glasses during heating involves complex interplay between the barriers to nucleation and the ability for these nuclei to grow. During the devitrification of glassy alloys, complicated metastable structures often precipitate instead of simpler, more stable compounds. Here, we access this unconventional type of phase selections by investigating an Al-10%Sm system, where a complicated cubic structure first precipitates with a large lattice parameter of 1.4 nm. We not only solve the structure of this big cubic phase containing ~140 atoms but establish an explicit interconnection between the structural orderings of the amorphous alloy and the cubic phase, which provides a low-barrier nucleation pathway at low temperatures. The surprising rapid growth of the crystal is attributed to its high tolerance to point defects, which minimize the short-scale atomic rearrangements to form the crystal. Our study suggests a new scenario of devitrification, where phase transformation proceeds initially without partitioning through a complex intermediate crystal phase.

قيم البحث

اقرأ أيضاً

74 - Na Kang , Wenhui Wan , Yanfeng Ge 2020
In this paper, we systematically investigated the structural and magnetic properties of CrTe by combining particle swarm optimization algorithm and first-principles calculations. With the electronic correlation effect considered, we predicted the gro und-state structure of CrTe to be NiAs-type (space group P63/mmc) structure at ambient pressure, consistent with the experimental observation. Moreover, we found two extra meta-stable Cmca and R3m structure which have negative formation enthalpy and stable phonon dispersion at ambient pressure. The Cmca structure is a layered antiferromagnetic metal. The cleaved energy of a single layer is 0.464 J/m2, indicating the possible synthesis of CrTe monolayer. R3m structure is a ferromagnetic half-metal. When the pressure was applied, the ground-state structure of CrTe transitioned from P63/mmc to R3m, then to Fm3m structure at a pressure about 34 and 42 GPa, respectively. We thought these results help to motivate experimental studies the CrTe compounds in the application of spintronics.
In many systems, nucleation of a stable solid may occur in the presence of other (often more than one) metastable phases. These may be polymorphic solids or even liquid phases. In such cases, nucleation of the solid phase from the melt may be facilit ated by the metastable phase because the latter can wet the interface between the parent and the daughter phases, even though there may be no signature of the existence of metastable phase in the thermodynamic properties of the parent liquid and the stable solid phase. Straightforward application of classical nucleation theory (CNT) is flawed here as it overestimates the nucleation barrier since surface tension is overestimated (by neglecting the metastable phases of intermediate order) while the thermodynamic free energy gap between daughter and parent phases remains unchanged. In this work we discuss a density functional theory (DFT) based statistical mechanical approach to explore and quantify such facilitation. We construct a simple order parameter dependent free energy surface that we then use in DFT to calculate (i) the order parameter profile, (ii) the overall nucleation free energy barrier and (iii) the surface tension between the parent liquid and the metastable solid and also parent liquid and stable solid phases. The theory indeed finds that the nucleation free energy barrier can decrease significantly in the presence of wetting. This approach can provide a microscopic explanation of Ostwald step rule and the well-known phenomenon of disappearing polymorphs that depends on temperature and other thermodynamic conditions. Theory reveals a diverse scenario for phase transformation kinetics some of which may be explored via modern nanoscopic synthetic methods.
67 - E. Machado 2005
We present a computational study of the dynamic behavior of a Ziff-Gulari-Barshad model of CO oxidation with CO desorption on a catalytic surface. Our results provide further evidence that below a critical desorption rate the model exhibits a non-equ ilibrium, first-order phase transition between low and high CO coverage phases. Our kinetic Monte Carlo simulations indicate that the transition process between these phases follows a decay mechanism very similar to the one described by the classic Kolmogorov-Johnson-Mehl-Avrami theory of phase transformation by nucleation and growth. We measure the lifetimes of the metastable phases on each side of the transition line and find that they are strongly dependent on the direction of the transformation, i.e., from low to high coverage or vice versa. Inspired by this asymmetry, we introduce a square-wave periodic external forcing, whose two parameters can be tuned to enhance the catalytic activity. At CO desorption rates below the critical value, we find that this far-from-equilibrium system undergoes a dynamic phase transition between a CO_2 productive phase and a nonproductive one. In the space of the parameters of the periodic external forcing, this nonequilibrium phase transition defines a line of critical points. The maximum enhancement rate for the CO_2 production rate occurs near this critical line.
Two-dimensional (2D) transition metal dichalcogenides MX2 (M = Mo, W, X = S, Se, Te) attracts enormous research interests in recent years. Its 2H phase possesses an indirect to direct bandgap transition in 2D limit, and thus shows great application p otentials in optoelectronic devices [1]. The 1T crystalline phase transition can drive the monolayer MX2 to be a 2D topological insulator. Here we realized the molecular beam epitaxial (MBE) growth of both the 1T and 2H phase monolayer WSe2 on bilayer graphene (BLG) substrate. The crystalline structures of these two phases were characterized using scanning tunneling microscopy. The monolayer 1T-WSe2 was found to be metastable, and can transform into 2H phase under post-annealing procedure. The phase transition temperature of 1T-WSe2 grown on BLG is lower than that of 1T phase grown on 2H-WSe2 layers. This thermo-driven crystalline phase transition makes the monolayer WSe2 to be an ideal platform for the controlling of topological phase transitions in 2D materials family.
160 - A.R. Oganov , Y. Ma , A.O. Lyakhov 2010
Prediction of stable crystal structures at given pressure-temperature conditions, based only on the knowledge of the chemical composition, is a central problem of condensed matter physics. This extremely challenging problem is often termed crystal st ructure prediction problem, and recently developed evolutionary algorithm USPEX (Universal Structure Predictor: Evolutionary Xtallography) made an important progress in solving it, enabling efficient and reliable prediction of structures with up to ~40 atoms in the unit cell using ab initio methods. Here we review this methodology, as well as recent progress in analyzing energy landscape of solids (which also helps to analyze results of USPEX runs). We show several recent applications - (1) prediction of new high-pressure phases of CaCO3, (2) search for the structure of the polymeric phase of CO2 (phase V), (3) high-pressure phases of oxygen, (4) exploration of possible stable compounds in the Xe-C system at high pressures, (5) exotic high-pressure phases of elements boron and sodium.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا