ﻻ يوجد ملخص باللغة العربية
We have realised a simple prototype system to perform searches for short timescale optical transients, utilising the novel drift scan imaging technique described by Tingay (2020). We used two coordinated and aligned cameras, with an overlap field-of-view of approximately 3.7 sq. deg., to capture over 34000 X 5 second images during approximately 24 hours of observing. The system is sensitive to optical transients, due to an effective exposure time per pixel of 21 ms, brighter than a V magnitude of 6.6. In our 89.7 sq. deg. hr of observations we find no candidate astronomical transients, giving an upper limit to the rate of these transients of 0.8 per square degree per day, competitive with other experiments of this type. The system is triggered by reflections from satellites and various instrumental effects, which are easily identifiable due to the two camera system. The next step in the development of this promising technique is to move to a system with larger apertures and wider fields of view.
An imaging technique with sensitivity to short duration optical transients is described. The technique is based on the use of wide-field cameras operating in a drift scanning mode, whereby persistent objects produce trails on the sensor and short dur
In order to further develop and implement novel drift scan imaging experiments to undertake wide field, high time resolution surveys for millisecond optical transients, an appropriate telescope drive system is required. This paper describes the devel
Reflections from objects in Earth orbit can produce sub-second, star-like optical flashes similar to astrophysical transients. Reflections have historically caused false alarms for transient surveys, but the population has not been systematically stu
Radar and optical simultaneous observations of meteors are important to understand the size distribution of the interplanetary dust. However, faint meteors detected by high power large aperture radar observations, which are typically as faint as 10 m
Searches for gravitational microlensing events are traditionally concentrated on the central regions of the Galactic bulge but many microlensing events are expected to occur in the Galactic plane, far from the Galactic Center. Owing to the difficulty