ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Counterfactual Learning and Evaluation for Recommender System

257   0   0.0 ( 0 )
 نشر من قبل Da Xu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The feedback data of recommender systems are often subject to what was exposed to the users; however, most learning and evaluation methods do not account for the underlying exposure mechanism. We first show in theory that applying supervised learning to detect user preferences may end up with inconsistent results in the absence of exposure information. The counterfactual propensity-weighting approach from causal inference can account for the exposure mechanism; nevertheless, the partial-observation nature of the feedback data can cause identifiability issues. We propose a principled solution by introducing a minimax empirical risk formulation. We show that the relaxation of the dual problem can be converted to an adversarial game between two recommendation models, where the opponent of the candidate model characterizes the underlying exposure mechanism. We provide learning bounds and conduct extensive simulation studies to illustrate and justify the proposed approach over a broad range of recommendation settings, which shed insights on the various benefits of the proposed approach.

قيم البحث

اقرأ أيضاً

In the last decade we have observed a mass increase of information, in particular information that is shared through smartphones. Consequently, the amount of information that is available does not allow the average user to be aware of all his options . In this context, recommender systems use a number of techniques to help a user find the desired product. Hence, nowadays recommender systems play an important role. Recommender Systems aim to identify products that best fits user preferences. These techniques are advantageous to both users and vendors, as it enables the user to rapidly find what he needs and the vendors to promote their products and sales. As the industry became aware of the gains that could be accomplished by using these algorithms, also a very interesting problem for many researchers, recommender systems became a very active area since the mid 90s. Having in mind that this is an ongoing problem the present thesis intends to observe the value of using a recommender algorithm to find users likes by observing her domain preferences. In a balanced probabilistic method, this thesis will show how news topics can be used to recommend news articles. In this thesis, we used different machine learning methods to determine the user ratings for an article. To tackle this problem, supervised learning methods such as linear regression, Naive Bayes and logistic regression are used. All the aforementioned models have a different nature which has an impact on the solution of the given problem. Furthermore, number of experiments are presented and discussed to identify the feature set that fits best to the problem.
This paper advocates privacy preserving requirements on collection of user data for recommender systems. The purpose of our study is twofold. First, we ask if restrictions on data collection will hurt test quality of RNN-based recommendations. We stu dy how validation performance depends on the available amount of training data. We use a combination of top-K accuracy, catalog coverage and novelty for this purpose, since good recommendations for the user is not necessarily captured by a traditional accuracy metric. Second, we ask if we can improve the quality under minimal data by using secondary data sources. We propose knowledge transfer for this purpose and construct a representation to measure similarities between purchase behaviour in data. This to make qualified judgements of which source domain will contribute the most. Our results show that (i) there is a saturation in test performance when training size is increased above a critical point. We also discuss the interplay between different performance metrics, and properties of data. Moreover, we demonstrate that (ii) our representation is meaningful for measuring purchase behaviour. In particular, results show that we can leverage secondary data to improve validation performance if we select a relevant source domain according to our similarly measure.
Realistic recommender systems are often required to adapt to ever-changing data and tasks or to explore different models systematically. To address the need, we present AutoRec, an open-source automated machine learning (AutoML) platform extended fro m the TensorFlow ecosystem and, to our knowledge, the first framework to leverage AutoML for model search and hyperparameter tuning in deep recommendation models. AutoRec also supports a highly flexible pipeline that accommodates both sparse and dense inputs, rating prediction and click-through rate (CTR) prediction tasks, and an array of recommendation models. Lastly, AutoRec provides a simple, user-friendly API. Experiments conducted on the benchmark datasets reveal AutoRec is reliable and can identify models which resemble the best model without prior knowledge.
The general aim of the recommender system is to provide personalized suggestions to users, which is opposed to suggesting popular items. However, the normal training paradigm, i.e., fitting a recommender model to recover the user behavior data with p ointwise or pairwise loss, makes the model biased towards popular items. This results in the terrible Matthew effect, making popular items be more frequently recommended and become even more popular. Existing work addresses this issue with Inverse Propensity Weighting (IPW), which decreases the impact of popular items on the training and increases the impact of long-tail items. Although theoretically sound, IPW methods are highly sensitive to the weighting strategy, which is notoriously difficult to tune. In this work, we explore the popularity bias issue from a novel and fundamental perspective -- cause-effect. We identify that popularity bias lies in the direct effect from the item node to the ranking score, such that an items intrinsic property is the cause of mistakenly assigning it a higher ranking score. To eliminate popularity bias, it is essential to answer the counterfactual question that what the ranking score would be if the model only uses item property. To this end, we formulate a causal graph to describe the important cause-effect relations in the recommendation process. During training, we perform multi-task learning to achieve the contribution of each cause; during testing, we perform counterfactual inference to remove the effect of item popularity. Remarkably, our solution amends the learning process of recommendation which is agnostic to a wide range of models -- it can be easily implemented in existing methods. We demonstrate it on Matrix Factorization (MF) and LightGCN [20]. Experiments on five real-world datasets demonstrate the effectiveness of our method.
148 - Yishi Xu , Yingxue Zhang , Wei Guo 2020
Given the convenience of collecting information through online services, recommender systems now consume large scale data and play a more important role in improving user experience. With the recent emergence of Graph Neural Networks (GNNs), GNN-base d recommender models have shown the advantage of modeling the recommender system as a user-item bipartite graph to learn representations of users and items. However, such models are expensive to train and difficult to perform frequent updates to provide the most up-to-date recommendations. In this work, we propose to update GNN-based recommender models incrementally so that the computation time can be greatly reduced and models can be updated more frequently. We develop a Graph Structure Aware Incremental Learning framework, GraphSAIL, to address the commonly experienced catastrophic forgetting problem that occurs when training a model in an incremental fashion. Our approach preserves a users long-term preference (or an items long-term property) during incremental model updating. GraphSAIL implements a graph structure preservation strategy which explicitly preserves each nodes local structure, global structure, and self-information, respectively. We argue that our incremental training framework is the first attempt tailored for GNN based recommender systems and demonstrate its improvement compared to other incremental learning techniques on two public datasets. We further verify the effectiveness of our framework on a large-scale industrial dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا