ﻻ يوجد ملخص باللغة العربية
We aim to estimate if structures, such as cavities, rings, and gaps, are common in disks around VLMS and to test models of structure formation in these disks. We also aim to compare the radial extent of the gas and dust emission in disks around VLMS, which can give us insight about radial drift. We studied six disks around VLMS in the Taurus star-forming region using ALMA Band 7 ($sim 340,$GHz) at a resolution of $sim0.1$. The targets were selected because of their high disk dust content in their stellar mass regime. Our observations resolve the disk dust continuum in all disks. In addition, we detect the $^{12}$CO ($J=3-2$) emission line in all targets and $^{13}$CO ($J=3-2$) in five of the six sources. The angular resolution allows the detection of dust substructures in three out of the six disks, which we studied by using UV-modeling. Central cavities are observed in the disks around stars MHO,6 (M5.0) and CIDA,1 (M4.5), while we have a tentative detection of a multi-ringed disk around J0433. Single planets of masses $0.1sim0.4,M_{rm{Jup}}$ would be required. The other three disks with no observed structures are the most compact and faintest in our sample. The emission of $^{12}$CO and $^{13}$CO is more extended than the dust continuum emission in all disks of our sample. When using the $^{12}$CO emission to determine the gas disk extension $R_{rm{gas}}$, the ratio of $R_{rm{gas}}/R_{rm{dust}}$ in our sample varies from 2.3 to 6.0, which is consistent with models of radial drift being very efficient around VLMS in the absence of substructures. Our observations do not exclude giant planet formation on the substructures observed. A comparison of the size and luminosity of VLMS disks with their counterparts around higher mass stars shows that they follow a similar relation.
Observations of protoplanetary disks around very low-mass stars and brown dwarfs remain challenging and little is known about their properties. The disk around CIDA1 ($sim$0.1-0.2$M_odot$) is one of the very few known disks that host a large cavity (
We conduct a pebble-driven planet population synthesis study to investigate the formation of planets around very low-mass stars and brown dwarfs, in the (sub)stellar mass range between $0.01 M_{odot}$ and $0.1 M_{odot}$. Based on the extrapolation
Briceno et al. recently used optical imaging, data from the Two-Micron All-Sky Survey (2MASS), and follow-up spectroscopy to search for young low-mass stars and brown dwarfs in 8 square degrees of the Taurus star-forming region. By the end of that st
There is growing observational evidence that disk evolution is stellar-mass dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS sp
Context. Most observational studies so far point towards brown dwarfs sharing a similar formation mechanism as the one accepted for low mass stars. However, larger databases and more systematic studies are needed before strong conclusions can be reac