ترغب بنشر مسار تعليمي؟ اضغط هنا

Anyonic Partial Transpose I: Quantum Information Aspects

69   0   0.0 ( 0 )
 نشر من قبل Hassan Shapourian
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A basic diagnostic of entanglement in mixed quantum states is known as the partial transpose and the corresponding entanglement measure is called the logarithmic negativity. Despite the great success of logarithmic negativity in characterizing bosonic many-body systems, generalizing the partial transpose to fermionic systems remained a technical challenge until recently when a new definition that accounts for the Fermi statistics was put forward. In this paper, we propose a way to generalize the partial transpose to anyons with (non-Abelian) fractional statistics based on the apparent similarity between the partial transpose and the braiding operation. We then define the anyonic version of the logarithmic negativity and show that it satisfies the standard requirements such as monotonicity to be an entanglement measure. In particular, we elucidate the properties of the anyonic logarithmic negativity by computing it for a toy density matrix of a pair of anyons within various categories. We conjecture that the subspace of states with a vanishing logarithmic negativity is a set of measure zero in the entire space of anyonic states, in contrast with the ordinary qubit systems where this subspace occupies a finite volume. We prove this conjecture for multiplicity-free categories.



قيم البحث

اقرأ أيضاً

Interaction in quantum systems can spread initially localized quantum information into the many degrees of freedom of the entire system. Understanding this process, known as quantum scrambling, is the key to resolving various conundrums in physics. H ere, by measuring the time-dependent evolution and fluctuation of out-of-time-order correlators, we experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor. We engineer quantum circuits that distinguish the two mechanisms associated with quantum scrambling, operator spreading and operator entanglement, and experimentally observe their respective signatures. We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate. These results open the path to studying complex and practically relevant physical observables with near-term quantum processors.
We express the positive partial transpose (PPT) separability criterion for symmetric states of multi-qubit systems in terms of matrix inequalities based on the recently introduced tensor representation for spin states. We construct a matrix from the tensor representation of the state and show that it is similar to the partial transpose of the density matrix written in the computational basis. Furthermore, the positivity of this matrix is equivalent to the positivity of a correlation matrix constructed from tensor products of Pauli operators. This allows for a more transparent experimental interpretation of the PPT criteria for an arbitrary spin-j state. The unitary matrices connecting our matrix to the partial transpose of the state generalize the so-called magic basis that plays a central role in Wootters explicit formula for the concurrence of a 2-qubit system and the Bell bases used for the teleportation of a one or two-qubit state.
We perform a quantum information analysis for multi-mode Gaussian approximate position measurements, underlying noisy homodyning in quantum optics. The Gaussian maximizer property is established for the entropy reduction of these measurements which p rovides explicit formulas for computations including their entanglement-assisted capacity. The case of one mode is discussed in detail.
We study the distinguishability of a particular type of maximally entangled states -- the lattice states using a new approach of semidefinite program. With this, we successfully construct all sets of four ququad-ququad orthogonal maximally entangled states that are locally indistinguishable and find some curious sets of six states having interesting property of distinguishability. Also, some of the problems arose from cite{CosentinoR14} about the PPT-distinguishability of lattice maximally entangled states can be answered.
A unified description of i) classical phase transitions and their remnants in finite systems and ii) quantum phase transitions is presented. The ensuing discussion relies on the interplay between, on the one hand, the thermodynamic concepts of temper ature and specific heat and on the other, the quantal ones of coupling strengths in the Hamiltonian. Our considerations are illustrated in an exactly solvable model of Plastino and Moszkowski [Il Nuovo Cimento {bf 47}, 470 (1978)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا