ترغب بنشر مسار تعليمي؟ اضغط هنا

Visualization of Supervised and Self-Supervised Neural Networks via Attribution Guided Factorization

141   0   0.0 ( 0 )
 نشر من قبل Shir Gur
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural network visualization techniques mark image locations by their relevancy to the networks classification. Existing methods are effective in highlighting the regions that affect the resulting classification the most. However, as we show, these methods are limited in their ability to identify the support for alternative classifications, an effect we name {em the saliency bias} hypothesis. In this work, we integrate two lines of research: gradient-based methods and attribution-based methods, and develop an algorithm that provides per-class explainability. The algorithm back-projects the per pixel local influence, in a manner that is guided by the local attributions, while correcting for salient features that would otherwise bias the explanation. In an extensive battery of experiments, we demonstrate the ability of our methods to class-specific visualization, and not just the predicted label. Remarkably, the method obtains state of the art results in benchmarks that are commonly applied to gradient-based methods as well as in those that are employed mostly for evaluating attribution methods. Using a new unsupervised procedure, our method is also successful in demonstrating that self-supervised methods learn semantic information.



قيم البحث

اقرأ أيضاً

Previous studies dominantly target at self-supervised learning on real-valued networks and have achieved many promising results. However, on the more challenging binary neural networks (BNNs), this task has not yet been fully explored in the communit y. In this paper, we focus on this more difficult scenario: learning networks where both weights and activations are binary, meanwhile, without any human annotated labels. We observe that the commonly used contrastive objective is not satisfying on BNNs for competitive accuracy, since the backbone network contains relatively limited capacity and representation ability. Hence instead of directly applying existing self-supervised methods, which cause a severe decline in performance, we present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution, to minimize the loss and obtain desirable accuracy. Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.5~15% on BNNs. We further reveal that it is difficult for BNNs to recover the similar predictive distributions as real-valued models when training without labels. Thus, how to calibrate them is key to address the degradation in performance. Extensive experiments are conducted on the large-scale ImageNet and downstream datasets. Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods. Code is available at https://github.com/szq0214/S2-BNN.
364 - Lu Yu , Shichao Pei , Chuxu Zhang 2020
This paper studies learning node representations with GNNs for unsupervised scenarios. We make a theoretical understanding and empirical demonstration about the non-steady performance of GNNs over different graph datasets, when the supervision signal s are not appropriately defined. The performance of GNNs depends on both the node feature smoothness and the graph locality. To smooth the discrepancy of node proximity measured by graph topology and node feature, we proposed KS2L - a novel graph underline{K}nowledge distillation regularized underline{S}elf-underline{S}upervised underline{L}earning framework, with two complementary regularization modules, for intra-and cross-model graph knowledge distillation. We demonstrate the competitive performance of KS2L on a variety of benchmarks. Even with a single GCN layer, KS2L has consistently competitive or even better performance on various benchmark datasets.
This paper proposes a novel cell-based neural architecture search algorithm (NAS), which completely alleviates the expensive costs of data labeling inherited from supervised learning. Our algorithm capitalizes on the effectiveness of self-supervised learning for image representations, which is an increasingly crucial topic of computer vision. First, using only a small amount of unlabeled train data under contrastive self-supervised learning allow us to search on a more extensive search space, discovering better neural architectures without surging the computational resources. Second, we entirely relieve the cost for labeled data (by contrastive loss) in the search stage without compromising architectures final performance in the evaluation phase. Finally, we tackle the inherent discrete search space of the NAS problem by sequential model-based optimization via the tree-parzen estimator (SMBO-TPE), enabling us to reduce the computational expense response surface significantly. An extensive number of experiments empirically show that our search algorithm can achieve state-of-the-art results with better efficiency in data labeling cost, searching time, and accuracy in final validation.
While supervised object detection and segmentation methods achieve impressive accuracy, they generalize poorly to images whose appearance significantly differs from the data they have been trained on. To address this when annotating data is prohibiti vely expensive, we introduce a self-supervised detection and segmentation approach that can work with single images captured by a potentially moving camera. At the heart of our approach lies the observation that object segmentation and background reconstruction are linked tasks, and that, for structured scenes, background regions can be re-synthesized from their surroundings, whereas regions depicting the moving object cannot. We encode this intuition into a self-supervised loss function that we exploit to train a proposal-based segmentation network. To account for the discrete nature of the proposals, we develop a Monte Carlo-based training strategy that allows the algorithm to explore the large space of object proposals. We apply our method to human detection and segmentation in images that visually depart from those of standard benchmarks and outperform existing self-supervised methods.
While self-supervised pretraining has proven beneficial for many computer vision tasks, it requires expensive and lengthy computation, large amounts of data, and is sensitive to data augmentation. Prior work demonstrates that models pretrained on dat asets dissimilar to their target data, such as chest X-ray models trained on ImageNet, underperform models trained from scratch. Users that lack the resources to pretrain must use existing models with lower performance. This paper explores Hierarchical PreTraining (HPT), which decreases convergence time and improves accuracy by initializing the pretraining process with an existing pretrained model. Through experimentation on 16 diverse vision datasets, we show HPT converges up to 80x faster, improves accuracy across tasks, and improves the robustness of the self-supervised pretraining process to changes in the image augmentation policy or amount of pretraining data. Taken together, HPT provides a simple framework for obtaining better pretrained representations with less computational resources.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا