ترغب بنشر مسار تعليمي؟ اضغط هنا

A New Frontier for J-band Interferometry: Dual-band NIRInterferometry with MIRC-X

54   0   0.0 ( 0 )
 نشر من قبل Aaron Labdon
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this contribution we report on our work to increase the spectral range of the Michigan Infrared Combiner-eXeter (MIRC-X) instrument at the CHARA array to allow for dual H and J band interferometric observations. We comment on the key science drivers behind this project and the methods of characterisation and correction of instrumental birefringence and dispersion. In addition, we report on the first results from on-sky commissioning in November 2019.


قيم البحث

اقرأ أيضاً

The astronomical J-band (1.25 micrometres) is a relatively untapped wave-band in long-baseline infrared interferometry. It allows access to the photosphere in giant and super-giant stars relatively free from opacities of molecular bands. The J-band c an potentially be used for imaging spots in the 1350 nm ionised iron line on slowly rotating magnetically-active stars through spectro-interferometry. In addition, the access to the 1080 nanometres He I line may probe outflows and funnel-flows in T-Tauri stars and allow the study of the star-disk interaction. We present the progress in the development of a six-inputs, J-band interferometric beam combiner based on the discrete beam combiner (DBC) concept. DBCs are periodic arrays of evanescent coupled waveguides which can be used to retrieve simultaneously the complex visibility of every baseline from a multi-aperture interferometer. Existing, planned or future interferometric facilities combine or will combine six or more telescopes at the time, thus increasing the snapshot uv coverage from the interferometric measurements. A better uv coverage will consequently enhance the accuracy of the image reconstruction. The component we are currently developing is manufactured in borosilicate glass using the technique of multi-pass ultrafast laser inscription (ULI), using a mode-locked Yb:KYW laser at the wavelength of 1030 nm, pulse duration of 300 fs and repetition rate of 1 MHz. After annealing, the written components showed a propagation loss less than 0.3 dB/cm and a negligible birefringence at a wavelength of 1310 nm, which makes the components suitable for un-polarized light operation. A single mode fiber-to-component insertion loss of 0.9 dB was measured. Work is currently in progress to characterize the components in spectro-interferometric mode with white light covering the J-band spectrum.
Son Of X-Shooter (SOXS) will be a new instrument designed to be mounted at the Nasmyth--A focus of the ESO 3.5 m New Technology Telescope in La Silla site (Chile). SOXS is composed of two high-efficiency spectrographs with a resolution slit product 4 500, working in the visible (350 -- 850 nm) and NIR (800 -- 2000 nm) range respectively, and a light imager in the visible (the acquisition camera usable also for scientific purposes). The science case is very broad, it ranges from moving minor bodies in the solar system, to bursting young stellar objects, cataclysmic variables and X-ray binary transients in our Galaxy, supernovae and tidal disruption events in the local Universe, up to gamma-ray bursts in the very distant and young Universe, basically encompassing all distance scales and astronomy branches. At the moment, the instrument passed the Preliminary Design Review by ESO (July 2017) and the Final Design (with FDR in July 2018).
Radial velocity (RV) surveys supported by high precision wavelength references (notably ThAr lamps and I2 cells) have successfully identified hundreds of exoplanets; however, as the search for exoplanets moves to cooler, lower mass stars, the optimum wave band for observation for these objects moves into the near infrared (NIR) and new wavelength standards are required. To address this need we are following up our successful deployment of an H band(1.45-1.7{mu}m) laser frequency comb based wavelength reference with a comb working in the Y and J bands (0.98-1.3{mu}m). This comb will be optimized for use with a 50,000 resolution NIR spectrograph such as the Penn State Habitable Zone Planet Finder. We present design and performance details of the current Y+J band comb.
NIKA2 (New IRAM KID Array 2) is a camera dedicated to millimeter wave astronomy based upon kilopixel arrays of Kinetic Inductance Detectors (KID). The pathfinder instrument, NIKA, has already shown state-of-the-art detector performance. NIKA2 builds upon this experience but goes one step further, increasing the total pixel count by a factor $sim$10 while maintaining the same per pixel performance. For the next decade, this camera will be the resident photometric instrument of the Institut de Radio Astronomie Millimetrique (IRAM) 30m telescope in Sierra Nevada (Spain). In this paper we give an overview of the main components of NIKA2, and describe the achieved detector performance. The camera has been permanently installed at the IRAM 30m telescope in October 2015. It will be made accessible to the scientific community at the end of 2016, after a one-year commissioning period. When this happens, NIKA2 will become a fundamental tool for astronomers worldwide.
Context. The Neel IRAM KIDs Array (NIKA) is a fully-integrated measurement system based on kinetic inductance detectors (KIDs) currently being developed for millimeter wave astronomy. In a first technical run, NIKA was successfully tested in 2009 at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. This prototype consisted of a 27-42 pixel camera imaging at 150 GHz. Subsequently, an improved system has been developed and tested in October 2010 at the Pico Veleta telescope. The instrument upgrades included dual-band optics allowing simultaneous imaging at 150 GHz and 220 GHz, faster sampling electronics enabling synchronous measurement of up to 112 pixels per measurement band, improved single-pixel sensitivity, and the fabrication of a sky simulator to replicate conditions present at the telescope. Results. The new dual-band NIKA was successfully tested in October 2010, performing in-line with sky simulator predictions. Initially the sources targeted during the 2009 run were re-imaged, verifying the improved system performance. An optical NEP was then calculated to be around 2 dot 10-16 W/Hz1/2. This improvement in comparison with the 2009 run verifies that NIKA is approaching the target sensitivity for photon-noise limited ground-based detectors. Taking advantage of the larger arrays and increased sensitivity, a number of scientifically-relevant faint and extended objects were then imaged including the Galactic Center SgrB2(FIR1), the radio galaxy Cygnus A and the NGC1068 Seyfert galaxy. These targets were all observed simultaneously in the 150 GHz and 220 GHz atmospheric windows.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا