ترغب بنشر مسار تعليمي؟ اضغط هنا

The first detection time of a quantum state under random probing

134   0   0.0 ( 0 )
 نشر من قبل David A. Kessler
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We solve for the statistics of the first detection of a quantum system in a particular desired state, when the system is subject to a projective measurement at independent identically distributed random time intervals. We present formulas for the probability of detection in the $n$th attempt. We calculate as well the mean and mean square both of the number of the first successful detection attempt and the time till first detection. We present explicit results for a particle initially localized at a site on a ring of size $L$, probed at some arbitrary given site, in the case when the detection intervals are distributed exponentially. We prove that, for all interval distributions and finite-dimensional Hamiltonians, the mean detection time is equal to the mean attempt number times the mean time interval between attempts. We further prove that for the return problem when the initial and target state are identical, the total detection probability is unity and the mean attempts till detection is an integer, which is the size of the Hilbert space (symmetrized about the target state). We study an interpolation between the fixed time interval case to an exponential distribution of time intervals via the Gamma distribution with constant mean and varying width. The mean arrival time as a function of the mean interval changes qualitatively as we tune the inter-arrival time distribution from very narrow (delta peaked) to exponential, as resonances are wiped out by the randomness of the sampling.


قيم البحث

اقرأ أيضاً

We introduce a discrete-time quantum dynamics on a two-dimensional lattice that describes the evolution of a $1+1$-dimensional spin system. The underlying quantum map is constructed such that the reduced state at each time step is separable. We show that for long times this state becomes stationary and displays a continuous phase transition in the density of excited spins. This phenomenon can be understood through a connection to the so-called Domany-Kinzel automaton, which implements a classical non-equilibrium process that features a transition to an absorbing state. Near the transition density-density correlations become long-ranged, but interestingly the same is the case for quantum correlations despite the separability of the stationary state. We quantify quantum correlations through the local quantum uncertainty and show that in some cases they may be determined experimentally solely by measuring expectation values of classical observables. This work is inspired by recent experimental progress in the realization of Rydberg lattice quantum simulators, which - in a rather natural way - permit the realization of conditional quantum gates underlying the discrete-time dynamics discussed here.
We describe bichromatic superradiant pump-probe spectroscopy as a tomographic probe of the Wigner function of a dispersing particle beam. We employed this technique to characterize the quantum state of an ultracold atomic beam, derived from a Rb-87 B ose-Einstein condensate, as it propagated in a 2.5 mm diameter circular waveguide. Our measurements place an upper bound on the longitudinal phase-space area occupied by the 300,000 atom beam of 9(1) $hbar$ and a lower bound on the coherence length (L > 13 microns). These results are consistent with full quantum degeneracy after multiple orbits around the waveguide.
The spectral form factor (SFF), characterizing statistics of energy eigenvalues, is a key diagnostic of many-body quantum chaos. In addition, partial spectral form factors (pSFFs) can be defined which refer to subsystems of the many-body system. They provide unique insights into energy eigenstate statistics of many-body systems, as we show in an analysis on the basis of random matrix theory and of the eigenstate thermalization hypothesis. We propose a protocol which allows the measurement of SFF and pSFFs in quantum many-body spin models, within the framework of randomized measurements. Aimed to probe dynamical properties of quantum many-body systems, our scheme employs statistical correlations of local random operations which are applied at different times in a single experiment. Our protocol provides a unified testbed to probe many-body quantum chaotic behavior, thermalization and many-body localization in closed quantum systems which we illustrate with simulations for Hamiltonian and Floquet many-body spin-systems.
The number of topological defects created in a system driven through a quantum phase transition exhibits a power-law scaling with the driving time. This universal scaling law is the key prediction of the Kibble-Zurek mechanism (KZM), and testing it u sing a hardware-based quantum simulator is a coveted goal of quantum information science. Here we provide such a test using quantum annealing. Specifically, we report on extensive experimental tests of topological defect formation via the one-dimensional transverse-field Ising model on two different D-Wave quantum annealing devices. We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors, with certain quantitative deviations from the theory likely caused by factors such as random control errors and transient effects. In addition, we probe physics beyond the KZM by identifying signatures of universality in the distribution and cumulants of the number of kinks and their decay, and again find agreement with the quantum simulator results. This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system. We support this result by extensive numerical computations. To check whether an alternative, classical interpretation of these results is possible, we used the spin-vector Monte Carlo model, a candidate classical description of the D-Wave device. We find that the degree of agreement with the experimental data from the D-Wave annealing devices is better for the KZM, a quantum theory, than for the classical spin-vector Monte Carlo model, thus favoring a quantum description of the device. Our work provides an experimental test of quantum critical dynamics in an open quantum system, and paves the way to new directions in quantum simulation experiments.
Classical satisfiability (SAT) and quantum satisfiability (QSAT) are complete problems for the complexity classes NP and QMA which are believed to be intractable for classical and quantum computers, respectively. Statistical ensembles of instances of these problems have been studied previously in an attempt to elucidate their typical, as opposed to worst case, behavior. In this paper we introduce a new statistical ensemble that interpolates between classical and quantum. For the simplest 2-SAT/2-QSAT ensemble we find the exact boundary that separates SAT and UNSAT instances. We do so by establishing coincident lower and upper bounds, in the limit of large instances, on the extent of the UNSAT and SAT regions, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا