ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Plasmonic Sensors

207   0   0.0 ( 0 )
 نشر من قبل Changhyoup Lee
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The extraordinary sensitivity of plasmonic sensors is well known in the optics and photonics community. These sensors exploit simultaneously the enhancement and the localization of electromagnetic fields close to the interface between a metal and a dielectric. This enables, for example, the design of integrated biochemical sensors at scales far below the diffraction limit. Despite their practical realization and successful commercialization, the sensitivity and associated precision of plasmonic sensors are starting to reach their fundamental classical limit given by quantum fluctuations of light -- known as the shot-noise limit. To improve the sensing performance of these sensors beyond the classical limit, quantum resources are increasingly being employed. This area of research has become known as `quantum plasmonic sensing and it has experienced substantial activity in recent years for applications in chemical and biological sensing. This review aims to cover both plasmonic and quantum techniques for sensing, and shows how they have been merged to enhance the performance of plasmonic sensors beyond traditional methods. We discuss the general framework developed for quantum plasmonic sensing in recent years, covering the basic theory behind the advancements made, and describe the important works that made these advancements. We also describe several key works in detail, highlighting their motivation, the working principles behind them, and their future impact. The intention of the review is to set a foundation for a burgeoning field of research that is currently being explored out of intellectual curiosity and for a wide range of practical applications in biochemistry, medicine, and pharmaceutical research.

قيم البحث

اقرأ أيضاً

We investigate the excitation of quantum plasmonic states of light in graphene using end-fire and prism coupling. In order to model the excitation process quantum mechanically we quantize the transverse-electric and transverse-magnetic surface plasmo n polariton (SPP) modes in graphene. A selection of regimes are then studied that enable the excitation of SPPs by photons and we show that efficient coupling of photons to graphene SPPs is possible at the quantum level. Futhermore, we study the excitation of quantum states and their propagation under the effects of loss induced from the electronic degrees of freedom in the graphene. Here, we investigate whether it is possible to protect quantum information using quantum error correction techniques. We find that these techniques provide a robust-to-loss method for transferring quantum states of light in graphene over large distances.
Wave mixing is an archetypical phenomenon in bosonic systems. In optomechanics, the bi-directional conversion between electromagnetic waves or photons at optical frequencies and elastic waves or phonons at radio frequencies is building on precisely t his fundamental principle. Surface acoustic waves provide a versatile interconnect on a chip and, thus, enable the optomechanical control of remote systems. Here, we report on the coherent nonlinear three-wave mixing between the coherent fields of two radio frequency surface acoustic waves and optical laser photons via the dipole transition of a single quantum dot exciton. In the resolved sideband regime, we demonstrate fundamental acoustic analogues of sum and difference frequency generation between the two SAWs and employ phase matching to deterministically enhance or suppress individual sidebands. This bi-directional transfer between the acoustic and optical domains is described by theory which fully takes into account direct and virtual multi-phonon processes. Finally, we show that the precision of the wave mixing is limited by the frequency accuracy of modern radio frequency electronics.
We report direct evidence of the bosonic nature of surface plasmon polaritons (SPPs) in a scattering-based beamsplitter. A parametric down-conversion source is used to produce two indistinguishable photons, each of which is converted into a SPP on a metal-stripe waveguide and then made to interact through a semi-transparent Bragg mirror. In this plasmonic analog of the Hong-Ou-Mandel experiment, we measure a coincidence dip with a visibility of 72%, a key signature that SPPs are bosons and that quantum interference is clearly involved.
The optical selection rules in epitaxial quantum dots are strongly influenced by the orientation of their natural quantization axis, which is usually parallel to the growth direction. This configuration is well suited for vertically emitting devices, but not for planar photonic circuits because of the poorly controlled orientation of the transition dipoles in the growth plane. Here we show that the quantization axis of gallium arsenide dots can be flipped into the growth plane via moderate in plane uniaxial stress. By using piezoelectric strain actuators featuring strain-amplification we study the evolution of the selection rules and excitonic fine-structure in a regime, in which quantum confinement can be regarded as a perturbation compared to strain in determining the symmetry properties of the system. The experimental and computational results suggest that uniaxial stress, may be the right tool to obtain quantum light sources with ideally oriented transition dipoles and enhanced oscillator strengths for integrated quantum photonics.
We propose a scheme to increase the sensitivity and thus the detection volume of nanoscale single molecule magnetic resonance imaging. The proposal aims to surpass the T1 limited detection of the sensor by taking advantage of a long-lived ancilla nuc lear spin to which the sensor is coupled. We show how this nuclear spin takes over the role of the sensor spin, keeping the characteristic time-scales of detection on the same order but with a longer life-time allowing it to detect a larger volume of the sample which is not possible by the sensor alone.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا