ﻻ يوجد ملخص باللغة العربية
We report direct evidence of the bosonic nature of surface plasmon polaritons (SPPs) in a scattering-based beamsplitter. A parametric down-conversion source is used to produce two indistinguishable photons, each of which is converted into a SPP on a metal-stripe waveguide and then made to interact through a semi-transparent Bragg mirror. In this plasmonic analog of the Hong-Ou-Mandel experiment, we measure a coincidence dip with a visibility of 72%, a key signature that SPPs are bosons and that quantum interference is clearly involved.
Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum
Controlling light at the level of individual photons has led to advances in fields ranging from quantum information and precision sensing to fundamental tests of quantum mechanics. A central development that followed the advent of single photon sourc
Hong-Ou-Mandel (HOM) interference, i.e. the bunching of indistinguishable photons at a beam splitter is a staple of quantum optics and lies at the heart of many quantum sensing approaches and recent optical quantum computers. Although originally prop
Traditional ghost imaging experiments exploit position correlations between correlated states of light. These correlations occur directly in spontaneous parametric down-conversion (SPDC), and in such a scenario, the two-photon state used for ghost im
Hong-Ou-Mandel interference is a cornerstone of optical quantum technologies. We explore both theoretically and experimentally how the nature of unwanted multi-photon components of single photon sources affect the interference visibility. We apply ou