ترغب بنشر مسار تعليمي؟ اضغط هنا

Studying Node Cooperation in Reputation Based Packet Forwarding within Mobile Ad hoc Networks

72   0   0.0 ( 0 )
 نشر من قبل Sara Berri
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the paradigm of mobile Ad hoc networks (MANET), forwarding packets originating from other nodes requires cooperation among nodes. However, as each node may not want to waste its energy, cooperative behavior can not be guaranteed. Therefore, it is necessary to implement some mechanism to avoid selfish behavior and to promote cooperation. In this paper, we propose a simple quid pro quo based reputation system, i.e., nodes that forward gain reputation, but lose more reputation if they do not forward packets from cooperative users (determined based on reputation), and lose less reputation when they chose to not forward packets from non-cooperative users. Under this framework, we model the behavior of users as an evolutionary game and provide conditions that result in cooperative behavior by studying the evolutionary stable states of the proposed game. Numerical analysis is provided to study the resulting equilibria and to illustrate how the proposed model performs compared to traditional models.

قيم البحث

اقرأ أيضاً

VANETs (Vehicular Ad hoc Networks) are highly mobile wireless ad hoc networks and will play an important role in public safety communications and commercial applications. Routing of data in VANETs is a challenging task due to rapidly changing topolog y and high speed mobility of vehicles. Conventional routing protocols in MANETs (Mobile Ad hoc Networks) are unable to fully address the unique characteristics in vehicular networks. In this paper, we propose EBGR (Edge Node Based Greedy Routing), a reliable greedy position based routing approach to forward packets to the node present in the edge of the transmission range of source/forwarding node as most suitable next hop, with consideration of nodes moving in the direction of the destination. We propose Revival Mobility model (RMM) to evaluate the performance of our routing technique. This paper presents a detailed description of our approach and simulation results show that packet delivery ratio is improved considerably compared to other routing techniques of VANET.
106 - A. Sabari , K. Duraiswamy , 2009
Multicasting is effective when its group members are sparse and the speed is low. On the other hand, broadcasting is effective when the group members dense and the speed are high. Since mobile ad hoc networks are highly dynamic in nature, either of t he above two strategies can be adopted at different scenarios. In this paper, we propose an ant agent based adaptive, multicast protocol that exploits group members desire to simplify multicast routing and invoke broadcast operations in appropriate localized regimes. By reducing the number of group members that participate in the construction of the multicast structure and by providing robustness to mobility by performing broadcasts in densely clustered local regions, the proposed protocol achieves packet delivery statistics that are comparable to that with a pure multicast protocol but with significantly lower overheads. By our simulation results, we show that our proposed protocol achieves increased Packet Delivery Fraction (PDF) with reduced overhead and routing load.
With the proliferation of mobile computing devices, the demand for continuous network connectivity regardless of physical location has spurred interest in the use of mobile ad hoc networks. Since Transmission Control Protocol (TCP) is the standard ne twork protocol for communication in the internet, any wireless network with Internet service need to be compatible with TCP. TCP is tuned to perform well in traditional wired networks, where packet losses occur mostly because of congestion. However, TCP connections in Ad-hoc mobile networks are plagued by problems such as high bit error rates, frequent route changes, multipath routing and temporary network partitions. The throughput of TCP over such connection is not satisfactory, because TCP misinterprets the packet loss or delay as congestion and invokes congestion control and avoidance algorithm. In this research, the performance of TCP in Adhoc mobile network with high Bit Error rate (BER) and mobility is studied and investigated. Simulation model is implemented and experiments are performed using the Network Simulatior 2 (NS2).
171 - Song Yean Cho 2008
Network coding is a recently proposed method for transmitting data, which has been shown to have potential to improve wireless network performance. We study network coding for one specific case of multicast, broadcasting, from one source to all nodes of the network. We use network coding as a loss tolerant, energy-efficient, method for broadcast. Our emphasis is on mobile networks. Our contribution is the proposal of DRAGONCAST, a protocol to perform network coding in such a dynamically evolving environment. It is based on three building blocks: a method to permit real-time decoding of network coding, a method to adjust the network coding transmission rates, and a method for ensuring the termination of the broadcast. The performance and behavior of the method are explored experimentally by simulations; they illustrate the excellent performance of the protocol.
In this paper, critical global connectivity of mobile ad hoc communication networks (MAHCN) is investigated. We model the two-dimensional plane on which nodes move randomly with a triangular lattice. Demanding the best communication of the network, w e account the global connectivity $eta$ as a function of occupancy $sigma$ of sites in the lattice by mobile nodes. Critical phenomena of the connectivity for different transmission ranges $r$ are revealed by numerical simulations, and these results fit well to the analysis based on the assumption of homogeneous mixing . Scaling behavior of the connectivity is found as $eta sim f(R^{beta}sigma)$, where $R=(r-r_{0})/r_{0}$, $r_{0}$ is the length unit of the triangular lattice and $beta$ is the scaling index in the universal function $f(x)$. The model serves as a sort of site percolation on dynamic complex networks relative to geometric distance. Moreover, near each critical $sigma_c(r)$ corresponding to certain transmission range $r$, there exists a cut-off degree $k_c$ below which the clustering coefficient of such self-organized networks keeps a constant while the averaged nearest neighbor degree exhibits a unique linear variation with the degree k, which may be useful to the designation of real MAHCN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا