ﻻ يوجد ملخص باللغة العربية
Contrastive divergence is a popular method of training energy-based models, but is known to have difficulties with training stability. We propose an adaptation to improve contrastive divergence training by scrutinizing a gradient term that is difficult to calculate and is often left out for convenience. We show that this gradient term is numerically significant and in practice is important to avoid training instabilities, while being tractable to estimate. We further highlight how data augmentation and multi-scale processing can be used to improve model robustness and generation quality. Finally, we empirically evaluate stability of model architectures and show improved performance on a host of benchmarks and use cases,such as image generation, OOD detection, and compositional generation.
This paper studies a training method to jointly estimate an energy-based model and a flow-based model, in which the two models are iteratively updated based on a shared adversarial value function. This joint training method has the following traits.
Generative Adversarial Networks (GANs) have shown great promise in modeling high dimensional data. The learning objective of GANs usually minimizes some measure discrepancy, textit{e.g.}, $f$-divergence~($f$-GANs) or Integral Probability Metric~(Wass
Weight-sharing neural architecture search (NAS) is an effective technique for automating efficient neural architecture design. Weight-sharing NAS builds a supernet that assembles all the architectures as its sub-networks and jointly trains the supern
A class of recent semi-supervised learning (SSL) methods heavily rely on domain-specific data augmentations. In contrast, generative SSL methods involve unsupervised learning based on generative models by either joint-training or pre-training, and ar
Meta-learning for offline reinforcement learning (OMRL) is an understudied problem with tremendous potential impact by enabling RL algorithms in many real-world applications. A popular solution to the problem is to infer task identity as augmented st