ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigating two super-resolution methods for downscaling precipitation: ESRGAN and CAR

87   0   0.0 ( 0 )
 نشر من قبل Campbell Watson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In an effort to provide optimal inputs to downstream modeling systems (e.g., a hydrodynamics model that simulates the water circulation of a lake), we hereby strive to enhance resolution of precipitation fields from a weather model by up to 9x. We test two super-resolution models: the enhanced super-resolution generative adversarial networks (ESRGAN) proposed in 2017, and the content adaptive resampler (CAR) proposed in 2020. Both models outperform simple bicubic interpolation, with the ESRGAN exceeding expectations for accuracy. We make several proposals for extending the work to ensure it can be a useful tool for quantifying the impact of climate change on local ecosystems while removing reliance on energy-intensive, high-resolution weather model simulations.

قيم البحث

اقرأ أيضاً

Statistical downscaling of global climate models (GCMs) allows researchers to study local climate change effects decades into the future. A wide range of statistical models have been applied to downscaling GCMs but recent advances in machine learning have not been explored. In this paper, we compare four fundamental statistical methods, Bias Correction Spatial Disaggregation (BCSD), Ordinary Least Squares, Elastic-Net, and Support Vector Machine, with three more advanced machine learning methods, Multi-task Sparse Structure Learning (MSSL), BCSD coupled with MSSL, and Convolutional Neural Networks to downscale daily precipitation in the Northeast United States. Metrics to evaluate of each methods ability to capture daily anomalies, large scale climate shifts, and extremes are analyzed. We find that linear methods, led by BCSD, consistently outperform non-linear approaches. The direct application of state-of-the-art machine learning methods to statistical downscaling does not provide improvements over simpler, longstanding approaches.
Spatial Precipitation Downscaling is one of the most important problems in the geo-science community. However, it still remains an unaddressed issue. Deep learning is a promising potential solution for downscaling. In order to facilitate the research on precipitation downscaling for deep learning, we present the first REAL (non-simulated) Large-Scale Spatial Precipitation Downscaling Dataset, RainNet, which contains 62,424 pairs of low-resolution and high-resolution precipitation maps for 17 years. Contrary to simulated data, this real dataset covers various types of real meteorological phenomena (e.g., Hurricane, Squall, etc.), and shows the physical characters - Temporal Misalignment, Temporal Sparse and Fluid Properties - that challenge the downscaling algorithms. In order to fully explore potential downscaling solutions, we propose an implicit physical estimation framework to learn the above characteristics. Eight metrics specifically considering the physical property of the data set are raised, while fourteen models are evaluated on the proposed dataset. Finally, we analyze the effectiveness and feasibility of these models on precipitation downscaling task. The Dataset and Code will be available at https://neuralchen.github.io/RainNet/.
Though many attempts have been made in blind super-resolution to restore low-resolution images with unknown and complex degradations, they are still far from addressing general real-world degraded images. In this work, we extend the powerful ESRGAN t o a practical restoration application (namely, Real-ESRGAN), which is trained with pure synthetic data. Specifically, a high-order degradation modeling process is introduced to better simulate complex real-world degradations. We also consider the common ringing and overshoot artifacts in the synthesis process. In addition, we employ a U-Net discriminator with spectral normalization to increase discriminator capability and stabilize the training dynamics. Extensive comparisons have shown its superior visual performance than prior works on various real datasets. We also provide efficient implementations to synthesize training pairs on the fly.
We propose a super-resolution (SR) simulation system that consists of a physics-based meteorological simulation and an SR method based on a deep convolutional neural network (CNN). The CNN is trained using pairs of high-resolution (HR) and low-resolu tion (LR) images created from meteorological simulation results for different resolutions so that it can map LR simulation images to HR ones. The proposed SR simulation system, which performs LR simulations, can provide HR prediction results in much shorter operating cycles than those required for corresponding HR simulation prediction system. We apply the SR simulation system to urban micrometeorology, which is strongly affected by buildings and human activity. Urban micrometeorology simulations that need to resolve urban buildings are computationally costly and thus cannot be used for operational real-time predictions even when run on supercomputers. We performed HR micrometeorology simulations on a supercomputer to obtain datasets for training the CNN in the SR method. It is shown that the proposed SR method can be used with a spatial scaling factor of 4 and that it outperforms conventional interpolation methods by a large margin. It is also shown that the proposed SR simulation system has the potential to be used for operational urban micrometeorology predictions.
The present paper proposes a physics-informed super-resolution (SR) model based on a convolutional neural network and applies it to the near-surface temperature in urban areas with the scaling factor of 4. The SR model incorporates a skip connection, a channel attention mechanism, and separated feature extractors for the inputs of temperature, building height, downward shortwave radiation, and horizontal velocity. We train the SR model with sets of low-resolution (LR) and high-resolution (HR) images from building-resolving large-eddy simulations (LESs) in an urban city. The generalization capability of the SR model is confirmed with LESs in another city. The estimated HR temperature fields are more accurate than those of the bicubic interpolation and image SR model that takes only the temperature as input. Except for the temperature input, the building height is the most important to reconstruct the HR temperature and enables the SR model to reduce errors in temperature near building boundaries. The analysis of attention weights indicates that the importance of building height increases as the downward shortwave radiation becomes larger. The contrast between sun and shade is strengthened with the increase in solar radiation, which may affect the temperature distribution. The short inference time suggests the potential of the proposed physics-informed SR model to facilitate a real-time HR forecast in metropolitan areas by combining it with an LR building-resolving LES model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا