ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing the Influencing Factors on the Accuracy of Underage Facial Age Estimation

310   0   0.0 ( 0 )
 نشر من قبل Mark Scanlon
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Swift response to the detection of endangered minors is an ongoing concern for law enforcement. Many child-focused investigations hinge on digital evidence discovery and analysis. Automated age estimation techniques are needed to aid in these investigations to expedite this evidence discovery process, and decrease investigator exposure to traumatic material. Automated techniques also show promise in decreasing the overflowing backlog of evidence obtained from increasing numbers of devices and online services. A lack of sufficient training data combined with natural human variance has been long hindering accurate automated age estimation -- especially for underage subjects. This paper presented a comprehensive evaluation of the performance of two cloud age estimation services (Amazon Web Services Rekognition service and Microsoft Azures Face API) against a dataset of over 21,800 underage subjects. The objective of this work is to evaluate the influence that certain human biometric factors, facial expressions, and image quality (i.e. blur, noise, exposure and resolution) have on the outcome of automated age estimation services. A thorough evaluation allows us to identify the most influential factors to be overcome in future age estimation systems.



قيم البحث

اقرأ أيضاً

Human face aging is irreversible process causing changes in human face characteristics such us hair whitening, muscles drop and wrinkles. Due to the importance of human face aging in biometrics systems, age estimation became an attractive area for re searchers. This paper presents a novel method to estimate the age from face images, using binarized statistical image features (BSIF) and local binary patterns (LBP)histograms as features performed by support vector regression (SVR) and kernel ridge regression (KRR). We applied our method on FG-NET and PAL datasets. Our proposed method has shown superiority to that of the state-of-the-art methods when using the whole PAL database.
Image-based age estimation aims to predict a persons age from facial images. It is used in a variety of real-world applications. Although end-to-end deep models have achieved impressive results for age estimation on benchmark datasets, their performa nce in-the-wild still leaves much room for improvement due to the challenges caused by large variations in head pose, facial expressions, and occlusions. To address this issue, we propose a simple yet effective method to explicitly incorporate facial semantics into age estimation, so that the model would learn to correctly focus on the most informative facial components from unaligned facial images regardless of head pose and non-rigid deformation. To this end, we design a face parsing-based network to learn semantic information at different scales and a novel face parsing attention module to leverage these semantic features for age estimation. To evaluate our method on in-the-wild data, we also introduce a new challenging large-scale benchmark called IMDB-Clean. This dataset is created by semi-automatically cleaning the noisy IMDB-WIKI dataset using a constrained clustering method. Through comprehensive experiment on IMDB-Clean and other benchmark datasets, under both intra-dataset and cross-dataset evaluation protocols, we show that our method consistently outperforms all existing age estimation methods and achieves a new state-of-the-art performance. To the best of our knowledge, our work presents the first attempt of leveraging face parsing attention to achieve semantic-aware age estimation, which may be inspiring to other high level facial analysis tasks.
Achieving high performance for facial age estimation with subjects in the borderline between adulthood and non-adulthood has always been a challenge. Several studies have used different approaches from the age of a baby to an elder adult and differen t datasets have been employed to measure the mean absolute error (MAE) ranging between 1.47 to 8 years. The weakness of the algorithms specifically in the borderline has been a motivation for this paper. In our approach, we have developed an ensemble technique that improves the accuracy of underage estimation in conjunction with our deep learning model (DS13K) that has been fine-tuned on the Deep Expectation (DEX) model. We have achieved an accuracy of 68% for the age group 16 to 17 years old, which is 4 times better than the DEX accuracy for such age range. We also present an evaluation of existing cloud-based and offline facial age prediction services, such as Amazon Rekognition, Microsoft Azure Cognitive Services, How-Old.net and DEX.
Facial attributes (e.g., age and attractiveness) estimation performance has been greatly improved by using convolutional neural networks. However, existing methods have an inconsistency between the training objectives and the evaluation metric, so th ey may be suboptimal. In addition, these methods always adopt image classification or face recognition models with a large amount of parameters, which carry expensive computation cost and storage overhead. In this paper, we firstly analyze the essential relationship between two state-of-the-art methods (Ranking-CNN and DLDL) and show that the Ranking method is in fact learning label distribution implicitly. This result thus firstly unifies two existing popular state-of-the-art methods into the DLDL framework. Second, in order to alleviate the inconsistency and reduce resource consumption, we design a lightweight network architecture and propose a unified framework which can jointly learn facial attribute distribution and regress attribute value. The effectiveness of our approach has been demonstrated on both facial age and attractiveness estimation tasks. Our method achieves new state-of-the-art results using the single model with 36$times$(6$times$) fewer parameters and 2.6$times$(2.1$times$) faster inference speed on facial age (attractiveness) estimation. Moreover, our method can achieve comparable results as the state-of-the-art even though the number of parameters is further reduced to 0.9M (3.8MB disk storage).
The objective of this study is to understand how senders choose shipping services for different products, given the availability of both emerging crowd-shipping (CS) and traditional carriers in a logistics market. Using data collected from a US surve y, Random Utility Maximization (RUM) and Random Regret Minimization (RRM) models have been employed to reveal factors that influence the diversity of decisions made by senders. Shipping costs, along with additional real-time services such as courier reputations, tracking info, e-notifications, and customized delivery time and location, have been found to have remarkable impacts on senders choices. Interestingly, potential senders were willing to pay more to ship grocery items such as food, beverages, and medicines by CS services. Moreover, the real-time services have low elasticities, meaning that only a slight change in those services will lead to a change in sender-behavior. Finally, data-science techniques were used to assess the performance of the RUM and RRM models and found to have similar accuracies. The findings from this research will help logistics firms address potential market segments, prepare service configurations to fulfill senders expectations, and develop effective business operations strategies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا